-
- Ehab G Daoud, Reynaldo Katigbak, and Marcus Ottochian.
- Respiratory Care Program, Kapiolani Community College, Honolulu, Hawaii, and John A Burns School of Medicine, University of Hawaii Honolulu, Hawaii. ehab_daoud@hotmail.com.
- Respir Care. 2019 Dec 1; 64 (12): 1555-1560.
BackgroundNew-generation ventilators display dynamic measures of respiratory mechanics, such as compliance, resistance, and auto-PEEP. Knowledge of the respiratory mechanics is paramount to clinicians at the bedside. These calculations are obtained automatically by using the least squares fitting method of the equation of motion. The accuracy of these calculations in static and dynamic conditions have not been fully validated or examined in different clinical conditions or various ventilator modes.MethodsA bench study was performed by using a lung simulator to compare the ventilator automated calculations during passive and active conditions. Three clinical scenarios (normal, COPD, and ARDS) were simulated with known compliances and resistance set per respective condition: normal (compliance 50 mL/cm H2O, resistance 10 cm H2O/L/s), COPD (compliance 60 mL/cm H2O, resistance 22 cm H2O/L/s), and ARDS (compliance 30 mL/cm H2O, and resistance 13 cm H2O/L/s). Each scenario was subjected to 4 different muscle pressures (Pmus): 0, -5, -10, and -15 cm H2O. All the experiments were done using adaptive support ventilation. The resulting automated dynamic calculations of compliance and resistance were then compared based on the clinical scenarios.ResultsThere was a small bias (average error) and level of agreement in the passive conditions in all the experiments; however, these errors and levels of agreement got progressively higher proportional to the increased Pmus. There was a strong positive correlation between Pmus and compliance measured as well as a strong negative correlation between Pmus and resistance measured.ConclusionsAutomated displayed calculations of respiratory mechanics were not dependable or accurate in active breathing conditions. The calculations were clinically more reliable in passive conditions. We propose different methods of calculating Pmus, which, if incorporated into the calculations, would improve the accuracy of respiratory mechanics made via the least squares fitting method in actively breathing conditions.Copyright © 2019 by Daedalus Enterprises.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.