-
J Pain Symptom Manage · Nov 2019
Patient-reported symptoms improve performance of risk prediction models for ED visits among patients with cancer: a population-wide study in Ontario using administrative data.
- Rinku Sutradhar, Mehdi Rostami, and Lisa Barbera.
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; ICES, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario. Electronic address: rinku.sutradhar@ices.on.ca.
- J Pain Symptom Manage. 2019 Nov 1; 58 (5): 745-755.
ContextPrior work shows measurements of symptom severity using the Edmonton Symptom Assessment System (ESAS) which are associated with emergency department (ED) visits in patients with cancer; however, it is not known if symptom severity improves the ability to predict ED visits.ObjectivesTo determine whether information on symptom severity improves the ability to predict ED visits among patients with cancer.MethodsThis was a population-based study of patients who were diagnosed with cancer and had at least one ESAS assessment completed between 2007 and 2015 in Ontario, Canada. After splitting the cohort into training and test sets, two ED visit risk prediction models using logistic regression were developed on the training cohort, one without ESAS and one with ESAS. The predictive performance of each risk model was assessed on the test cohort and compared with respect to area under the curve and calibration.ResultsThe full cohort consisted of 212,615 unique patients with a total of 1,267,294 ESAS assessments. The risk prediction model including ESAS was superior in sensitivity, specificity, accuracy, and discrimination. The area under the curve was 73.7% under the model with ESAS, whereas it was 70.1% under the model without ESAS. The model with ESAS was also better calibrated. This improvement in calibration was particularly noticeable among patients in the higher deciles of predicted risk.ConclusionThis study demonstrates the importance of incorporating symptom measurements when developing an ED visit risk calculator for patients with cancer. Improved predictive models for ED visits using measurements of symptom severity may serve as an important clinical tool to prompt timely interventions by the cancer care team before an ED visit is necessary.Copyright © 2019 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.