• J. Am. Coll. Surg. · Oct 2019

    Improving Operating Room Efficiency: A Machine Learning Approach to Predict Case-Time Duration.

    • Matthew A Bartek, Rajeev C Saxena, Stuart Solomon, Christine T Fong, Lakshmana D Behara, Ravitheja Venigandla, Kalyani Velagapudi, John D Lang, and Bala G Nair.
    • Department of General Surgery, University of Washington, Seattle, WA. Electronic address: bartek@uw.edu.
    • J. Am. Coll. Surg. 2019 Oct 1; 229 (4): 346354.e3346-354.e3.

    BackgroundAccurate estimation of operative case-time duration is critical for optimizing operating room use. Current estimates are inaccurate and earlier models include data not available at the time of scheduling. Our objective was to develop statistical models in a large retrospective data set to improve estimation of case-time duration relative to current standards.Study DesignWe developed models to predict case-time duration using linear regression and supervised machine learning. For each of these models, we generated an all-inclusive model, service-specific models, and surgeon-specific models. In the latter 2 approaches, individual models were created for each surgical service and surgeon, respectively. Our data set included 46,986 scheduled operations performed at a large academic medical center from January 2014 to December 2017, with 80% used for training and 20% for model testing/validation. Predictions derived from each model were compared with our institutional standard of using average historic procedure times and surgeon estimates. Models were evaluated based on accuracy, overage (case duration > predicted + 10%), underage (case duration < predicted - 10%), and the predictive capability of being within a 10% tolerance threshold.ResultsThe machine learning algorithm resulted in the highest predictive capability. The surgeon-specific model was superior to the service-specific model, with higher accuracy, lower percentage of overage and underage, and higher percentage of cases within the 10% threshold. The ability to predict cases within 10% improved from 32% using our institutional standard to 39% with the machine learning surgeon-specific model.ConclusionsOur study is a notable advancement toward statistical modeling of case-time duration across all surgical departments in a large tertiary medical center. Machine learning approaches can improve case duration estimations, enabling improved operating room scheduling, efficiency, and reduced costs.Copyright © 2019. Published by Elsevier Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…