• J Clin Monit Comput · Aug 2020

    Towards development of alert thresholds for clinical deterioration using continuous predictive analytics monitoring.

    • Jessica Keim-Malpass, Matthew T Clark, Douglas E Lake, and J Randall Moorman.
    • Department of Acute and Specialty Care, University of Virginia School of Nursing, P.O. Box 800782, Charlottesville, VA, 22908, USA. Jlk2t@virginia.edu.
    • J Clin Monit Comput. 2020 Aug 1; 34 (4): 797-804.

    AbstractPatients who deteriorate while on the acute care ward and are emergently transferred to the Intensive Care Unit (ICU) experience high rates of mortality. To date, risk scores for clinical deterioration applied to the acute care wards rely on static or intermittent inputs of vital sign and assessment parameters. We propose the use of continuous predictive analytics monitoring, or data that relies on real-time physiologic monitoring data captured from ECG, documented vital signs, laboratory results, and other clinical assessments to predict clinical deterioration. A necessary step in translation to practice is understanding how an alert threshold would perform if applied to a continuous predictive analytic that was trained to detect clinical deterioration. The purpose of this study was to evaluate the positive predictive value of 'risk spikes', or large abrupt increases in the output of a statistical model of risk predicting clinical deterioration. We studied 8111 consecutive patient admissions to a cardiovascular medicine and surgery ward with continuous ECG data. We first trained a multivariable logistic regression model for emergent ICU transfer in a test set and tested the characteristics of the model in a validation set of 4059 patient admissions. Then, in a nested analysis we identified large, abrupt spikes in risk (increase by three units over the prior 6 h; a unit is the fold-increase in risk of ICU transfer in the next 24 h) and reviewed hospital records of 91 patients for clinical events such as emergent ICU transfer. We compared results to 59 control patients at times when they were matched for baseline risk including the National Warning Score (NEWS). There was a 3.4-fold higher event rate for patients with risk spikes (positive predictive value 24% compared to 7%, p = 0.006). If we were to use risk spikes as an alert, they would fire about once per day on a 73-bed acute care ward. Risk spikes that were primarily driven by respiratory changes (ECG-derived respiration (EDR) or charted respiratory rate) had highest PPV (30-35%) while risk spikes driven by heart rate had the lowest (7%). Alert thresholds derived from continuous predictive analytics monitoring are able to be operationalized as a degree of change from the person's own baseline rather than arbitrary threshold cut-points, which can likely better account for the individual's own inherent acuity levels. Point of care clinicians in the acute care ward settings need tailored alert strategies that promote a balance in recognition of clinical deterioration and assessment of the utility of the alert approach.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.