• Plos One · Jan 2016

    Predicting 30-Day Readmissions in an Asian Population: Building a Predictive Model by Incorporating Markers of Hospitalization Severity.

    • Lian Leng Low, Nan Liu, Sijia Wang, Julian Thumboo, Ong Marcus Eng Hock ME Department of Emergency Medicine, Singapore General Hospital, Singapore. Health S, and Kheng Hock Lee.
    • Department of Family Medicine & Continuing Care, Singapore General Hospital, Singapore.
    • Plos One. 2016 Jan 1; 11 (12): e0167413.

    BackgroundTo reduce readmissions, it may be cost-effective to consider risk stratification, with targeting intervention programs to patients at high risk of readmissions. In this study, we aimed to derive and validate a prediction model including several novel markers of hospitalization severity, and compare the model with the LACE index (Length of stay, Acuity of admission, Charlson comorbidity index, Emergency department visits in past 6 months), an established risk stratification tool.MethodThis was a retrospective cohort study of all patients ≥ 21 years of age, who were admitted to a tertiary hospital in Singapore from January 1, 2013 through May 31, 2015. Data were extracted from the hospital's electronic health records. The outcome was defined as unplanned readmissions within 30 days of discharge from the index hospitalization. Candidate predictive variables were broadly grouped into five categories: Patient demographics, social determinants of health, past healthcare utilization, medical comorbidities, and markers of hospitalization severity. Multivariable logistic regression was used to predict the outcome, and receiver operating characteristic analysis was performed to compare our model with the LACE index.Results74,102 cases were enrolled for analysis. Of these, 11,492 patient cases (15.5%) were readmitted within 30 days of discharge. A total of fifteen predictive variables were strongly associated with the risk of 30-day readmissions, including number of emergency department visits in the past 6 months, Charlson Comorbidity Index, markers of hospitalization severity such as 'requiring inpatient dialysis during index admission, and 'treatment with intravenous furosemide 40 milligrams or more' during index admission. Our predictive model outperformed the LACE index by achieving larger area under the curve values: 0.78 (95% confidence interval [CI]: 0.77-0.79) versus 0.70 (95% CI: 0.69-0.71).ConclusionSeveral factors are important for the risk of 30-day readmissions, including proxy markers of hospitalization severity.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.