• Headache · May 2018

    Resting State Functional Connectivity After Sphenopalatine Ganglion Blocks in Chronic Migraine With Medication Overuse Headache: A Pilot Longitudinal fMRI Study.

    • Kaitlin Krebs, Chris Rorden, and X Michelle Androulakis.
    • School of Medicine, Department of Neurology, University of South Carolina, Columbia, SC, USA.
    • Headache. 2018 May 1; 58 (5): 732-743.

    ObjectiveIn this pilot study, the purpose is to investigate if a series of sphenopalatine ganglion (SPG) blockade treatments modulate the functional connectivity within the salience and central executive network (CEN) in chronic migraine with medication overuse headaches (CMw/MOH ).BackgroundUsing intranasal local anesthesia to block the SPG for the treatment of various headache disorders has been employed in clinical practice since the early 1900s. However, the exact mechanism of how SPG modulate resting state intrinsic functional brain networks connectivity remains to be elucidated. This pilot study seeks to understand the resting state connectivity changes in salience and CENs, with emphasis on the mesocorticolimbic systems, before and after a series of SPG block treatments.MethodsUsing fMRI, resting state connectivity was derived from predefined networks of nodes (regions of interests) for the salience (27 nodes, 351 connections) and CENs (17 nodes, 136 connections). After treatments, a paired samples t-test (with 10,000 permutations to correct for multiple comparison) was used to evaluate changes in the intranetwork resting state functional connectivity within the salience and executive networks, as well as the overall network connectivity strength.ResultsWhen comparing connectivity strength at baseline to that at the end of treatment in our cohort of 10 CMw/MOH participants, there were several connections within the salience (n = 9) and executive (n = 8) networks that were significantly improved. Within the salience network, improved connectivity was observed between the prefrontal cortex and various regions of the insula, basal ganglia, motor, and frontal cortex. Additionally, changes in connectivity were observed between regions of the temporal cortex with the basal ganglia and supramarginal gyrus. Within the CEN, improved connectivity was observed between the prefrontal cortex and regions of the anterior thalamus, caudate, and frontal cortex. After treatment, the overall CEN connectivity was significantly improved (Baseline 0.00 ± 0.08; 6 weeks 0.03 ± 0.09, P = .01); however, the overall salience network connectivity was not significantly improved (Baseline -0.01 ± 0.10; 6 weeks 0.01 ± 0.12, P = .26). Additionally, after treatment, there was a significant reduction in the number of moderate/severe headache days per month (Baseline 21.1 ± 6.6; 6 weeks 11.2 ± 6.5, P < .001), HIT-6 (Baseline 66.1 ± 2.6; 6 weeks 60.2 ± 3.6, P < .001), and PHQ-9 (Baseline 12.4 ± 5.7; 6 weeks 6.1 ± 3.6, P = .008) scores.ConclusionIn this longitudinal fMRI study, we observed improved functional connectivity within both networks, primarily involving connectivity between regions of the prefrontal cortex and limbic (cortical-limbic) structures, and between different cortical (cortical-cortical) regions after a series of repetitive SPG blockades. The overall CEN strength was also improved. Our results suggest that recurrent parasympathetic inhibition via SPG is associated with improved functional connectivity in brain regions critical to pain processing in CMw/MOH .© 2018 American Headache Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…