• Ann. N. Y. Acad. Sci. · Jan 2017

    Comparative Study

    Machine learning approaches to personalize early prediction of asthma exacerbations.

    • Joseph Finkelstein and In Cheol Jeong.
    • Department of Biomedical Informatics, Columbia University, New York, New York.
    • Ann. N. Y. Acad. Sci. 2017 Jan 1; 1387 (1): 153-165.

    AbstractPatient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self-monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training datasets, predictive feature selection, and evaluation of resulting classifiers. Using a 7-day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions.© 2016 New York Academy of Sciences.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…