• Environmental pollution · Jun 2017

    Personal exposure to fine particulate matter, lung function and serum club cell secretory protein (Clara).

    • Cuicui Wang, Jing Cai, Renjie Chen, Jingjin Shi, Changyuan Yang, Huichu Li, Zhijing Lin, Xia Meng, Cong Liu, Yue Niu, Yongjie Xia, Zhuohui Zhao, Weihua Li, and Haidong Kan.
    • School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China.
    • Environ. Pollut. 2017 Jun 1; 225: 450-455.

    BackgroundThe underlying mechanisms about the association between ambient fine particulate matter (PM2.5) and lung function were unclear. Few epidemiological studies have evaluated the potential mediating effects of serum club cell secretory protein (Clara) (CC16), a biomarker of pulmonary epithelium integrity.ObjectivesTo evaluate the short-term effect of personal PM2.5 exposure on lung function and to explore the potential mediating role of CC16 in this effect.MethodsWe enrolled 36 healthy, nonsmoking college students for a panel study in Shanghai, China from December 17, 2014 to July 11, 2015. We measured personal and real-time exposure to PM2.5 for 72 h preceding each of four rounds of health examinations, including lung function test and serum CC16 measurement. We used linear mixed-effect models to examine the effects of PM2.5 on lung function and CC16 over various lag times. Furthermore, we analyzed the mediating effect of CC16 in the association between PM2.5 and lung function.ResultsAverage PM2.5 exposure ranged from 36 to 52 μg/m3 across different lag periods. PM2.5 exposure was negatively associated with lung function and positively associated with serum CC16 concentration. The effect of PM2.5 on CC16 occurred earlier than that on lung function. For instance, an interquartile range (IQR) increase in 0-2 h average exposure to PM2.5 was significantly associated with a 4.84% increase in serum CC16; and an IQR increase in 3-6 h average exposure to PM2.5 was significantly associated with a 1.08% decrease in 1-sec forced expiratory volume. These effects lasted up to 24 h after exposure. Increased serum CC16 contributed 3.9%-36.3% of the association between PM2.5 and impaired lung function.ConclusionsAcute exposure to PM2.5 might induce an immediate decrease in lung function by virtue of the loss of pulmonary epithelium integrity.Copyright © 2017 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…