-
J. Thorac. Cardiovasc. Surg. · May 2020
Delayed delivery of endothelial progenitor cell-derived extracellular vesicles via shear thinning gel improves postinfarct hemodynamics.
- Jennifer J Chung, Jason Han, Leo L Wang, Maria F Arisi, Samir Zaman, Jonathan Gordon, Elizabeth Li, Samuel T Kim, Zoe Tran, Carol W Chen, Ann C Gaffey, Jason A Burdick, and Pavan Atluri.
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pa; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pa.
- J. Thorac. Cardiovasc. Surg. 2020 May 1; 159 (5): 18251835.e21825-1835.e2.
BackgroundExtracellular vesicles (EVs) are promising therapeutics for cardiovascular disease, but poorly-timed delivery might hinder efficacy. We characterized the time-dependent response to endothelial progenitor cell (EPC)-EVs within an injectable shear-thinning hydrogel (STG+EV) post-myocardial infarction (MI) to identify when an optimal response is achieved.MethodsThe angiogenic effects of prolonged hypoxia on cell response to EPC-EV therapy and EV uptake affinity were tested in vitro. A rat model of acute MI via left anterior descending artery ligation was created and STG+EV was delivered via intramyocardial injections into the infarct border zone at time points corresponding to phases of post-MI inflammation: 0 hours (immediate), 3 hours (acute inflammation), 4 days (proliferative), and 2 weeks (fibrosis). Hemodynamics 4 weeks post-treatment were compared across treatment and control groups (phosphate buffered saline [PBS], shear-thinning gel). Scar thickness and ventricular diameter were assessed histologically. The primary hemodynamic end point was end systolic elastance. The secondary end point was scar thickness.ResultsEPC-EVs incubated with chronically versus acutely hypoxic human umbilical vein endothelial cells resulted in a 2.56 ± 0.53 versus 1.65 ± 0.15-fold increase (P = .05) in a number of vascular meshes and higher uptake of EVs over 14 hours. End systolic elastance improved with STG+EV therapy at 4 days (0.54 ± 0.08) versus PBS or shear-thinning gel (0.26 ± 0.03 [P = .02]; 0.23 ± 0.02 [P = .01]). Preservation of ventricular diameter (6.20 ± 0.73 mm vs 8.58 ± 0.38 mm [P = .04]; 9.13 ± 0.25 mm [P = .01]) and scar thickness (0.89 ± 0.05 mm vs 0.62 ± 0.03 mm [P < .0001] and 0.58 ± 0.05 mm [P < .0001]) was significantly greater at 4 days, compared wit PBS and shear-thinning gel controls.ConclusionsDelivery of STG+EV 4 days post-MI improved left ventricular contractility and preserved global ventricular geometry, compared with controls and immediate therapy post-MI. These findings suggest other cell-derived therapies can be optimized by strategic timing of therapeutic intervention.Copyright © 2019 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.