-
Comparative Study
A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques.
- Christopher M J Cain, Philip Schleicher, Rene Gerlach, Robert Pflugmacher, Matti Scholz, and Frank Kandziora.
- Adelaide Spine Clinic, Adelaide, Australia. drcmjcain@adelaide.on.net
- Spine. 2005 Dec 1; 30 (23): 2631-6.
Study DesignEstablished lumbar fixation methods were assessed biomechanically, and a comparison was made with a new stand-alone anterior lumbar interbody cage device incorporating integrated anterior fixation.ObjectivesTo compare the stability of a new stand-alone anterior implant (Test-device) with established fixation methods to assess its suitability for clinical use. Our hypothesis being that the Test-device would provide stability comparable to that provided by an anterior cage when supplemented with posterior pedicle screw fixation.Summary Of Background DataIt is accepted that the use of rigid pedicle screw instrumentation increases the chance of achieving a solid fusion, but its use may be associated with a significant increase in postoperative morbidity caused by disruption of the posterior musculature. It is also evident that this increased fusion rate is generally not associated with increased clinical success. This dilemma has led to a search for a solution and to the development of the Test-device anterior lumbar interbody device.MethodsThe kinematic properties of either the L3-L4 or L4-L5 lumbar motion segment of 8 cadaveric lumbar spines have been tested using the following sequence of fixation: intact, Test-device, Test-device and translaminar facet screws (TS), Cage and TS, Cage and Universal Spine System (USS), and Cage and small stature USS.ResultsAll fixation techniques except the cage and TS decreased (P < 0.05) range of motion (ROM), neutral zone (NZ), and elastic zone (EZ), and increased (P < 0.05) stiffness in comparison to the intact motion segment in all test modes. There was a significant increase (P < 0.01) in the ROM, NZ, and EZ, and decrease in the stiffness of the cage and TS group in comparison to all other stabilization techniques in flexion and rotation. There was no significant difference in the ROM, NZ, EZ, and stiffness between the Test-device and cage and USS groups in flexion, extension, and bending. The Test-device resulted in a significantly lower EZ (P < 0.05) and a significantly higher stiffness (P < 0.05) in rotation than all other fixation methods.ConclusionsThe Test-device alone provided similar and the Test-device and TS higher stability than the pedicle screw constructs evaluated. These results support progression to clinical trials using the Test-device as a stand-alone implant.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.