• Spine J · Feb 2018

    Application of neurite orientation dispersion and density imaging or diffusion tensor imaging to quantify the severity of cervical spondylotic myelopathy and to assess postoperative neurologic recovery.

    • Genki Okita, Tetsuro Ohba, Tomohiro Takamura, Shigeto Ebata, Ryo Ueda, Hiroshi Onishi, Hirotaka Haro, and Masaaki Hori.
    • Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan.
    • Spine J. 2018 Feb 1; 18 (2): 268-275.

    Background ContextSurgical outcome and the severity of cervical spondylotic myelopathy (CSM) are unpredictable and cannot be estimated by conventional anatomical magnetic resonance imaging (MRI). The utility of diffusion tensor imaging (DTI) to quantify the severity of CSM and to assess postoperative neurologic recovery has been investigated. However, whether conventional DTI should be applied in a clinical setting remains controversial. Neurite orientation dispersion and density imaging (NODDI) is a recently introduced model-based diffusion-weighted MRI technique that quantifies specific microstructural features related directly to neuronal morphology. However, there are as yet few clinical applications of NODDI reported. Indeed, there are no reports to indicate NODDI is useful for diagnosing CSM.Study DesignThis is a retrospective cohort study using consecutive patients.PurposeThe objective of this study was to evaluate the utility of NODDI and conventional DTI for detecting changes in the spinal cord microstructure. In particular, this study aimed to quantify the preoperative severity of CSM and to assess postoperative neurologic recovery from this myelopathy.Patient SampleWe included 27 consecutive patients with a nontraumatic cervical lesion from CSM who underwent laminoplasty at a single institution between April 2012 and April 2015. The patients underwent MRI before and approximately 2 weeks after surgery.Outcome MeasuresIn addition to conventional DTI metrics, we evaluated the intracellular volume fraction (ICVF) and the orientation dispersion index (ODI), which are metrics derived from NODDI. The 10-second grip and release test and the Japanese Orthopaedic Association scoring system were used before and 1 year after surgery to assess neurologic outcome.Materials And MethodsNeurite orientation dispersion and density imaging and conventional DTI values were measured at the C2-C3 intervertebral level (control value) and at the most compressed levels (C3-C7 intervertebral levels) were measured. The changes in these values pre- and postoperative were demonstrated. Correlations between NODDI and conventional DTI values and clinical outcome were determined.ResultsPreoperative fractional anisotropy was significantly correlated with the severity of neural damage, but not with postoperative neurologic recovery. No significant correlation could be found between the preoperative ICVF, the ODI, the apparent diffusion coefficient, and the severity of the preoperative neurologic dysfunction. Preoperative ICVF was most strongly correlated with the severity of neurologic dysfunction and postoperative neurologic recovery.ConclusionsConventional DTI may be applied clinically to assess the severity of myelopathy. Neurite orientation dispersion and density imaging may be more valuable than conventional DTI to predict outcome following surgery in patients with CSM.Copyright © 2017 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.