• Brain research · Nov 1996

    Ultrastructural immunocytochemical localization of the N-methyl-D-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens.

    • K N Gracy and V M Pickel.
    • Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA.
    • Brain Res. 1996 Nov 11; 739 (1-2): 169-81.

    AbstractThe N-methyl-D-aspartate (NMDA)-type glutamate receptors in the shell region of the nucleus accumbens (ACB) have been implicated in the modulation of dopamine release and in amphetamine-induced neurotoxicity. We used electron microscopic immunocyto-chemistry to determine the anatomical sites for NMDA-mediated effects of glutamate and for their potential interactions with dopaminergic afferents identified by the presence of tyrosine hydroxylase (TH) in this region of the rat brain. Immunogold and immunoperoxidase methods were used to localize antisera against the R1 subunit of the NMDA receptor (NMDAR1) alone or combined with TH. In single labeling experiments, approximately half of the NMDAR1-like immunoreactivity (NMDAR1-LI) was localized to extrasynaptic plasma membranes of neuronal processes, many (92 out of 215) of which were dendrites, and only 33 out of 215 were unmyelinated axons or terminals. Surprisingly, the neuronal labeling of NMDAR1 was almost equaled by that seen in astrocytic processes (88 out of 215). Dual labeling for TH and NMDAR1 was rarely observed and was only seen in axons. However, in favorable planes of section, NMDAR1 was noted along intervaricose segments of axons in which TH was more readily seen in the varicosity. This differential intra-axonal distribution suggests an underestimation of dual labeling in single coronal sections through unmyelinated axons and terminals. The TH-immunoreactive terminals were more often seen apposed to NMDA-immunoreactive astrocytic processes and dendrites. These results provide the first ultrastructural evidence for presynaptic modulation of dopamine release by NMDA receptors in the shell of the nucleus accumbens. They also indicate that NMDA receptors modulate postsynaptic neurons receiving input from the dopaminergic afferents and suggest a previously unsuspected functional association involving glial NMDA receptors and dopaminergic afferents in this brain region.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.