• Brain research · Jun 2011

    Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition.

    • Lei Lv, Yan Sun, Xiang Han, Cong-cong Xu, Yu-Ping Tang, and Qiang Dong.
    • Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China.
    • Brain Res. 2011 Jun 17; 1396: 60-8.

    AbstractHistone deacetylases (HDAC) inhibitors including valproic acid (VPA) have emerged as a promising therapeutic intervention in neurological disorders. We investigated the levels of acetylated histone and the therapeutic potential of VPA in a rat model of spinal cord injury (SCI). At different time points (12 h, 1 day, 3 days, 1 week and 2 weeks) after SCI or sham surgery, the spinal cords were collected to evaluate the levels of acetylated histone H3 (Ac-H3) and H4 (Ac-H4). VPA or vehicle was injected for 1 week starting immediately after SCI and histone acetylation, apoptosis, as well as neurobehavior were observed to test the effect of VPA. The levels of Ac-H3 and Ac-H4 in the injured spinal cord started to significantly decrease as early as day 1, and remained below those in uninjured controls for at least 2 weeks after SCI. Injection of VPA markedly prevented the reductions of Ac-H3 and Ac-H4, upregulated the expressions of Hsp70 and Bcl-2, reduced apoptosis and finally promoted locomotion recovery. Our data demonstrated that SCI led to marked reduction in histone acetylation; VPA was neuroprotective in the SCI model, and the mechanism may involve HDAC inhibition and protective proteins induction.Copyright © 2011 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.