• Eur Spine J · Aug 2019

    Development of a machine learning algorithm predicting discharge placement after surgery for spondylolisthesis.

    • Paul T Ogink, Aditya V Karhade, Quirina C B S Thio, Stuart H Hershman, Thomas D Cha, Christopher M Bono, and Joseph H Schwab.
    • Orthopaedic Spine Service, Massachusetts General Hospital - Harvard Medical School, 3.946, Yawkey Building, 55 Fruit Street, Boston, MA, 02114, USA. ptogink@gmail.com.
    • Eur Spine J. 2019 Aug 1; 28 (8): 1775-1782.

    PurposeWe aimed to develop a machine learning algorithm that can accurately predict discharge placement in patients undergoing elective surgery for degenerative spondylolisthesis.MethodsThe National Surgical Quality Improvement Program (NSQIP) database was used to select patients that underwent surgical treatment for degenerative spondylolisthesis between 2009 and 2016. Our primary outcome measure was non-home discharge which was defined as any discharge not to home for which we grouped together all non-home discharge destinations including rehabilitation facility, skilled nursing facility, and unskilled nursing facility. We used Akaike information criterion to select the most appropriate model based on the outcomes of the stepwise backward logistic regression. Four machine learning algorithms were developed to predict discharge placement and were assessed by discrimination, calibration, and overall performance.ResultsNine thousand three hundred and thirty-eight patients were included. Median age was 63 (interquartile range [IQR] 54-71), and 63% (n = 5,887) were female. The non-home discharge rate was 18.6%. Our models included age, sex, diabetes, elective surgery, BMI, procedure, number of levels, ASA class, preoperative white blood cell count, and preoperative creatinine. The Bayes point machine was considered the best model based on discrimination (AUC = 0.753), calibration (slope = 1.111; intercept = - 0.002), and overall model performance (Brier score = 0.132).ConclusionThis study has shown that it is possible to create a predictive machine learning algorithm with both good accuracy and calibration to predict discharge placement. Using our methodology, this type of model can be developed for many other conditions and (elective) treatments. These slides can be retrieved under Electronic Supplementary Material.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.