-
Meta Analysis
Population pharmacokinetics meta-analysis of recombinant human erythropoietin in healthy subjects.
- Per Olsson-Gisleskog, Philippe Jacqmin, and Juan Jose Perez-Ruixo.
- Exprimo Consulting, London, UK.
- Clin Pharmacokinet. 2007 Jan 1; 46 (2): 159-73.
ObjectiveThe aim of this analysis was to develop a population pharmacokinetic model to describe the pharmacokinetics of recombinant human erythropoietin (rHuEPO) in healthy subjects, after intravenous and subcutaneous administration over a wide dose range, and to examine the influence of demographic characteristics and other covariates on the pharmacokinetic parameters of rHuEPO.MethodsErythropoietin serum concentration data were available from 16 studies comprising 49 healthy subjects who received rHuEPO intravenous doses from 10 to 300 IU/kg, 427 healthy subjects who received rHuEPO subcutaneous doses from 1 to 2400 IU/kg, and 57 healthy subjects who received placebo and where endogenous erythropoietin concentrations were measured. Different pharmacokinetic models were fitted to the dataset using nonlinear mixed-effects modeling software (NONMEM, Version V, Level 1). Several patient covariates were tested in order to quantify the effect on rHuEPO pharmacokinetic parameters. Model evaluation was examined using a posterior predictive check.ResultsErythropoietin showed a diurnal baseline variation of +/-20%, described with a dual cosine model. Disposition was described with a two-compartment model with a small volume of distribution (6L) and parallel linear and nonlinear clearance. Total clearance varied between 0.3 and 0.9 L/h over the concentration range studied. A dual absorption model was used to characterise the rHuEPO absorption from the subcutaneous formulation and consisted of a faster pathway described as a sequential zero- and first-order absorption process and a parallel slower pathway characterised as a zero-order process. The bioavailability of subcutaneous rHuEPO increased from 30% at low doses to 71% at the highest dose of 160 kIU and was described using a hyperbolic model. The most important covariate effects were a decrease in the first-order absorption rate constant (k(a)) with increasing age, an increase in subcutaneous bioavailability with increasing baseline haemoglobin, and a decrease in bioavailability with increasing bodyweight. A posterior predictive check showed no systematic deviation of the simulated data from the observed values.ConclusionThe population pharmacokinetic model developed is suitable to describe the pharmacokinetic behaviour of rHuEPO after intravenous and subcutaneous administration in healthy subjects, over a wide dose range.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.