-
Bmc Musculoskel Dis · Aug 2006
Immediate effects of spinal manipulation on thermal pain sensitivity: an experimental study.
- Steven Z George, Mark D Bishop, Joel E Bialosky, Giorgio Zeppieri, and Michael E Robinson.
- Department of Physical Therapy, Brooks Center for Rehabilitation Studies, PO Box 100154, University of Florida, Gainesville, FL 32610-0154, USA. sgeorge@phhp.ufl.edu
- Bmc Musculoskel Dis. 2006 Aug 15; 7: 68.
BackgroundThe underlying causes of spinal manipulation hypoalgesia are largely unknown. The beneficial clinical effects were originally theorized to be due to biomechanical changes, but recent research has suggested spinal manipulation may have a direct neurophysiological effect on pain perception through dorsal horn inhibition. This study added to this literature by investigating whether spinal manipulation hypoalgesia was: a) local to anatomical areas innervated by the lumbar spine; b) correlated with psychological variables; c) greater than hypoalgesia from physical activity; and d) different for A-delta and C-fiber mediated pain perception.MethodsAsymptomatic subjects (n = 60) completed baseline psychological questionnaires and underwent thermal quantitative sensory testing for A-delta and C-fiber mediated pain perception. Subjects were then randomized to ride a stationary bicycle, perform lumbar extension exercise, or receive spinal manipulation. Quantitative sensory testing was repeated 5 minutes after the intervention period. Data were analyzed with repeated measures ANOVA and post-hoc testing was performed with Bonferroni correction, as appropriate.ResultsSubjects in the three intervention groups did not differ on baseline characteristics. Hypoalgesia from spinal manipulation was observed in lumbar innervated areas, but not control (cervical innervated) areas. Hypoalgesic response was not strongly correlated with psychological variables. Spinal manipulation hypoalgesia for A-delta fiber mediated pain perception did not differ from stationary bicycle and lumbar extension (p > 0.05). Spinal manipulation hypoalgesia for C-fiber mediated pain perception was greater than stationary bicycle riding (p = 0.040), but not for lumbar extension (p = 0.105).ConclusionLocal dorsal horn mediated inhibition of C-fiber input is a potential hypoalgesic mechanism of spinal manipulation for asymptomatic subjects, but further study is required to replicate this finding in subjects with low back pain.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.