-
- Xin Li, Ying Liang, Yaojing Chen, Junying Zhang, Dongfeng Wei, Kewei Chen, Ni Shu, Eric M Reiman, and Zhanjun Zhang.
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China.
- J. Neurosci. 2015 Jul 8; 35 (27): 10015-24.
UnlabelledSome previous reports have suggested that hypertension is a risk factor for dementia and cognitive impairments. Using behavioral data from 1007 elderly human subjects (405 hypertensive patients) of Han ethnicity from Beijing, China, the present study aimed to assess the effects of hypertension on cognitive performance and explore related neuronal changes via advanced resting-state functional magnetic resonance imaging and diffusion tensor imaging data from 84 of these subjects (44 hypertensive patients). Cognitively, we found that patients with hypertension showed decreased executive functions and attention compared with those with normotension in the large sample. In magnetic resonance imaging scan sample, using independent component analysis to examine the functional connectivity difference between the two groups, we found that the frontoparietal networks in the hypertensive group exhibited altered patterns compared with the control group, mainly in the inferior parietal lobe, left inferior frontal lobe, and precuneus. Using tract-based spatial statistics to investigate the between-group structural difference, we found that the hypertensive group showed significantly reduced integrity of white matter in the bilateral superior longitudinal fasciculus. Importantly, using the mediation analysis, we found that the functional connectivity of the frontoparietal networks mediates the impact of white matter on executive function in the hypertensive group. The results demonstrate that hypertension targets a specific pattern of cognitive decline, possibly due to deficits in the white matter and functional connectivity in frontal and parietal lobes. Our findings highlight the importance of brain protection in hypertension.Significance StatementHypertension is a risk factor for cognitive decline and dementia. However, the neural mechanism underlying cognitive decline in hypertension is largely unknown. We studied the relationship among cognitive decline, brain functional, and structural changes in hypertensive patients via advanced resting-state functional magnetic resonance imaging and diffusion tensor imaging data in a Chinese cohort. Hypertensive patients showed executive dysfunction, along with disrupted functional connectivity in frontoparietal (FP) networks and reduced integrity of white matter in the bilateral superior longitudinal fasciculus. Importantly, the functional connectivity changes mediate the impact of white matter alterations on cognitive decline in the hypertensive group. Our findings provide a better understanding of the mechanism of cognitive decline in hypertension and highlight the importance of brain protection in hypertension.Copyright © 2015 the authors 0270-6474/15/3510016-10$15.00/0.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.