• J Neuroinflamm · Nov 2018

    Omega-3 polyunsaturated fatty acid attenuates traumatic brain injury-induced neuronal apoptosis by inducing autophagy through the upregulation of SIRT1-mediated deacetylation of Beclin-1.

    • Xiangrong Chen, Zhigang Pan, Zhongning Fang, Weibin Lin, Shukai Wu, Fuxing Yang, Yasong Li, Huangde Fu, Hongzhi Gao, and Shun Li.
    • Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
    • J Neuroinflamm. 2018 Nov 8; 15 (1): 310.

    BackgroundEnhancing autophagy after traumatic brain injury (TBI) may decrease the expression of neuronal apoptosis-related molecules. Autophagy-mediated neuronal survival is regulated by the sirtuin family of proteins (SIRT). Omega-3 polyunsaturated fatty acids (ω-3 PUFA) are known to have antioxidative and anti-inflammatory effects. We previously demonstrated that ω-3 PUFA supplementation attenuated neuronal apoptosis by modulating the neuroinflammatory response through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway, leading to neuroprotective effects following experimental traumatic brain injury (TBI). However, no studies have elucidated if the neuroprotective effects of ω-3 PUFAs against TBI-induced neuronal apoptosis are modulated by SIRT1-mediated deacetylation of the autophagy pathway.MethodsThe Feeney DM TBI model was adopted to induce TBI rats. Modified neurological severity scores, the rotarod test, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect Beclin-1 nuclear translocation and autophagy pathway activation. The impact of SIRT1 deacetylase activity on Beclin-1 acetylation and the interaction between cytoplasmic Beclin-1 and Bcl-2 were assessed to evaluate the neuroprotective effects of ω-3 PUFAs and to determine if these effects were dependent on SIRT1-mediated deacetylation of the autophagy pathway in order to gain further insight into the mechanisms underlying the development of neuroprotection after TBI.Resultsω-3 PUFA supplementation protected neurons against TBI-induced neuronal apoptosis via enhancement of the autophagy pathway. We also found that treatment with ω-3 PUFA significantly increased the NAD+/NADH ratio and SIRT1 activity following TBI. In addition, ω-3 PUFA supplementation increased Beclin-1 deacetylation and its nuclear export and induced direct interactions between cytoplasmic Beclin-1 and Bcl-2 by increasing SIRT1 activity following TBI. These events led to the inhibition of neuronal apoptosis and to neuroprotective effects through enhancing autophagy after TBI, possibly due to elevated SIRT1.Conclusionsω-3 PUFA supplementation attenuated TBI-induced neuronal apoptosis by inducing the autophagy pathway through the upregulation of SIRT1-mediated deacetylation of Beclin-1.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…