• Stroke · Oct 2015

    n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    • Wenting Zhang, Jia Liu, Xiaoming Hu, Peiying Li, Rehana K Leak, Yanqin Gao, and Jun Chen.
    • From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, PA (X.H., J.C.); Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA (R.K.L.); Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA (X.H., J.C.). chenj2@upmc.edu wtzhang@fudan.edu.cn.
    • Stroke. 2015 Oct 1; 46 (10): 2943-50.

    Background And PurposeOmega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes.MethodsDietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures.Resultsn-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model.Conclusionsn-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival.© 2015 American Heart Association, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.