• Pain · Aug 2013

    Neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat.

    • Renaud Jeffrey-Gauthier, Jean-Paul Guillemot, and Mathieu Piché.
    • Département de chiropratique, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7.
    • Pain. 2013 Aug 1;154(8):1434-41.

    AbstractNeuroimaging methods such as functional magnetic resonance imaging (fMRI) have been used extensively to investigate pain-related cerebral mechanisms. However, these methods rely on a tight coupling of neuronal activity to hemodynamic changes. Because pain may be associated with hemodynamic changes unrelated to local neuronal activity (eg, increased mean arterial pressure [MAP]), it is essential to determine whether the neurovascular coupling is maintained during nociceptive processing. In this study, local field potentials (LFP) and cortical blood flow (CBF) changes evoked by electrical stimulation of the left hind paw were recorded concomitantly in the right primary somatosensory cortex (SI) in 15 rats. LFP, CBF, and MAP changes were examined in response to stimulus intensities ranging from 3 to 30 mA. In addition, LFP, CBF, and MAP changes evoked by a 10-mA stimulation were examined during immersion of the tail in non-nociceptive or nociceptive hot water (counter-stimulation). SI neurovascular coupling was altered for stimuli of nociceptive intensities (P<0.001). This alteration was intensity-dependent and was strongly associated with MAP changes (r=0.98, P<0.001). However, when the stimulus intensity was kept constant, SI neurovascular coupling was not significantly affected by nociceptive counter-stimulation (P=0.4), which similarly affected the amplitude of shock-evoked LFP and CBF changes. It remains to be determined whether such neurovascular uncoupling occurs in humans, and whether it also affects other regions usually activated by painful stimuli. These results should be taken into account for accurate interpretation of fMRI studies that involve nociceptive stimuli associated with MAP changes.Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…