-
J Diabetes Sci Technol · Jul 2009
A feasibility study of bihormonal closed-loop blood glucose control using dual subcutaneous infusion of insulin and glucagon in ambulatory diabetic swine.
- Firas H El-Khatib, John Jiang, and Edward R Damiano.
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.
- J Diabetes Sci Technol. 2009 Jul 1; 3 (4): 789-803.
BackgroundWe sought to test the feasibility and efficacy of bihormonal closed-loop blood glucose (BG) control that utilizes subcutaneous (SC) infusion of insulin and glucagon, a model-predictive control algorithm for determining insulin dosing, and a proportional-derivative control algorithm for determining glucagon dosing.MethodsThirteen closed-loop experiments (approximately 7-27 h in length) were conducted in six ambulatory diabetic pigs weighing 26-50 kg. In all experiments, venous BG was sampled through a central line in the vena cava. Efficacy was evaluated in terms of the controller's ability to regulate BG in response to large meal disturbances ( approximately 5 g of carbohydrate per kilogram of body mass per meal) based only on regular frequent venous BG sampling and requiring only the subject's weight for initialization.ResultsClosed-loop results demonstrated successful BG regulation to normoglycemic range, with average insulin-to-carbohydrate ratios between approximately 1:20 and 1:40 U/g. The total insulin bolus doses averaged approximately 6 U for a meal containing approximately 6 g per kilogram body mass. Mean BG values in two 24 h experiments were approximately 142 and approximately 155 mg/dl, with the total daily dose (TDD) of insulin being approximately 0.8-1.0 U per kilogram of body mass and the TDD of glucagon being approximately 0.02-0.05 mg. Results also affirmed the efficacy of SC doses of glucagon in staving off episodic hypoglycemia.ConclusionsWe demonstrate the feasibility of bihormonal closed-loop BG regulation using a control system that employs SC infusion of insulin and glucagon as governed by an algorithm that reacts only to BG without any feed-forward information regarding carbohydrate consumption or physical activity. As such, this study can reasonably be regarded as the first practical implementation of an artificial endocrine pancreas that has a hormonally derived counterregulatory capability.Copyright 2009 Diabetes Technology Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.