This study addresses the spatial relation between local Na(+) and K(+) imbalances in the ischemic core in a rat model of focal ischemic stroke. Quantitative [Na(+)] and [K(+)] brain maps were obtained by (23)Na MRI and histochemical K(+) staining, respectively, and calibrated by emission flame photometry of the micropunch brain samples. Stroke location was verified by diffusion MRI, by changes in tissue surface reflectivity and by immunohistochemistry with microtubule-associated protein 2 antibody. ⋯ Some residual mismatch between the sites of maximum Na(+) and K(+) imbalances was attributed to the different channels and pathways involved in transport of the two ions. A linear regression of the [Na(+)]br vs. [K(+)]br in the samples of ischemic brain indicates that for each K(+) equivalent leaving ischemic tissue, 0.8±0.1 Eq, on average, of Na(+) enter the tissue. Better understanding of the mechanistic link between the Na(+) influx and K(+) egress would validate the (23)Na MRI slope as a candidate biomarker and a complementary tool for assessing ischemic damage and treatment planning.