-
- Scott F Lempka, Hans J Zander, Carlos J Anaya, Alexandria Wyant, John G Ozinga, and Andre G Machado.
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA.
- Neuromodulation. 2020 Jul 1; 23 (5): 572-581.
ObjectiveDespite the widespread use of spinal cord stimulation (SCS) for chronic pain management, its neuromodulatory effects remain poorly understood. Computational models provide a valuable tool to study SCS and its effects on axonal pathways within the spinal cord. However, these models must include sufficient detail to correlate model predictions with clinical effects, including patient-specific data. Therefore, the goal of this study was to investigate axonal activation at clinically relevant SCS parameters using a computer model that incorporated patient-specific anatomy and electrode locations.MethodsWe developed a patient-specific computer model for a patient undergoing SCS to treat chronic pain. This computer model consisted of two main components: 1) finite element model of the extracellular voltages generated by SCS and 2) multicompartment cable models of axons in the spinal cord. To determine the potential significance of a patient-specific approach, we also performed simulations with standard canonical models of SCS. We used the computer models to estimate axonal activation at clinically measured sensory, comfort, and discomfort thresholds.ResultsThe patient-specific and canonical models predicted significantly different axonal activation. Relative to the canonical models, the patient-specific model predicted sensory threshold estimates that were more consistent with the corresponding clinical measurements. These results suggest that it is important to account for sources of interpatient variability (e.g., anatomy, electrode locations) in model-based analysis of SCS.ConclusionsThis study demonstrates the potential for patient-specific computer models to quantitatively describe the axonal response to SCS and to address scientific questions related to clinical SCS.© 2019 International Neuromodulation Society.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.