• Journal of neurosurgery · Sep 2020

    First application of 7-T ultra-high field diffusion tensor imaging to detect altered microstructure of thalamic-somatosensory anatomy in trigeminal neuralgia.

    • John W Rutland, Kuang-Han Huang, Corey M Gill, Dillan F Villavisanis, Judy Alper, Gaurav Verma, Joshua B Bederson, Bradley N Delman, Raj K Shrivastava, and Priti Balchandani.
    • 1Translational and Molecular Imaging Institute, and.
    • J. Neurosurg. 2020 Sep 1; 133 (3): 839847839-847.

    ObjectiveTrigeminal neuralgia (TN) is a debilitating neurological disease that commonly results from neurovascular compression of the trigeminal nerve (CN V). Although the CN V has been extensively studied at the site of neurovascular compression, many pathophysiological factors remain obscure. For example, thalamic-somatosensory function is thought to be altered in TN, but the abnormalities are inadequately characterized. Furthermore, there are few studies using 7-T MRI to examine patients with TN. The purpose of the present study was to use 7-T MRI to assess microstructural alteration in the thalamic-somatosensory tracts of patients with TN by using ultra-high field MRI.MethodsTen patients with TN and 10 age- and sex-matched healthy controls underwent scanning using 7-T MRI with diffusion tensor imaging. Structural images were segmented with an automated algorithm to obtain thalamus and primary somatosensory cortex (S1). Probabilistic tractography was performed between the thalamus and S1, and the microstructure of the thalamic-somatosensory tracts was compared between patients with TN and controls.ResultsFractional anisotropy of the thalamic-somatosensory tract ipsilateral to the site of neurovascular compression was reduced in patients (mean 0.43) compared with side-matched controls (mean 0.47, p = 0.01). The mean diffusivity was increased ipsilaterally in patients (mean 6.58 × 10-4 mm2/second) compared with controls (mean 6.15 × 10-4 mm2/second, p = 0.02). Radial diffusivity was increased ipsilaterally in patients (mean 4.91 × 10-4 mm2/second) compared with controls (mean 4.44 × 10-4 mm2/second, p = 0.01). Topographical analysis revealed fractional anisotropy reduction and diffusivity elevation along the entire anatomical S1 arc in patients with TN.ConclusionsThe present study is the first to examine microstructural properties of the thalamic-somatosensory anatomy in patients with TN and to evaluate quantitative differences compared with healthy controls. The finding of reduced integrity of these white matter fibers provides evidence of microstructural alteration at the level of the thalamus and S1, and furthers the understanding of TN neurobiology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…