• Critical care medicine · Apr 2018

    Multicenter Study

    Development and External Validation of an Automated Computer-Aided Risk Score for Predicting Sepsis in Emergency Medical Admissions Using the Patient's First Electronically Recorded Vital Signs and Blood Test Results.

    • Muhammad Faisal, Andy Scally, Donald Richardson, Kevin Beatson, Robin Howes, Kevin Speed, and Mohammed A Mohammed.
    • Faculty of Health Studies, Bradford Institute for Health Research, University of Bradford, Bradford, United Kingdom.
    • Crit. Care Med. 2018 Apr 1; 46 (4): 612-618.

    ObjectivesTo develop a logistic regression model to predict the risk of sepsis following emergency medical admission using the patient's first, routinely collected, electronically recorded vital signs and blood test results and to validate this novel computer-aided risk of sepsis model, using data from another hospital.DesignCross-sectional model development and external validation study reporting the C-statistic based on a validated optimized algorithm to identify sepsis and severe sepsis (including septic shock) from administrative hospital databases using International Classification of Diseases, 10th Edition, codes.SettingTwo acute hospitals (York Hospital - development data; Northern Lincolnshire and Goole Hospital - external validation data).PatientsAdult emergency medical admissions discharged over a 24-month period with vital signs and blood test results recorded at admission.InterventionsNone.Main ResultsThe prevalence of sepsis and severe sepsis was lower in York Hospital (18.5% = 4,861/2,6247; 5.3% = 1,387/2,6247) than Northern Lincolnshire and Goole Hospital (25.1% = 7,773/30,996; 9.2% = 2,864/30,996). The mortality for sepsis (York Hospital: 14.5% = 704/4,861; Northern Lincolnshire and Goole Hospital: 11.6% = 899/7,773) was lower than the mortality for severe sepsis (York Hospital: 29.0% = 402/1,387; Northern Lincolnshire and Goole Hospital: 21.4% = 612/2,864). The C-statistic for computer-aided risk of sepsis in York Hospital (all sepsis 0.78; sepsis: 0.73; severe sepsis: 0.80) was similar in an external hospital setting (Northern Lincolnshire and Goole Hospital: all sepsis 0.79; sepsis: 0.70; severe sepsis: 0.81). A cutoff value of 0.2 gives reasonable performance.ConclusionsWe have developed a novel, externally validated computer-aided risk of sepsis, with reasonably good performance for estimating the risk of sepsis for emergency medical admissions using the patient's first, electronically recorded, vital signs and blood tests results. Since computer-aided risk of sepsis places no additional data collection burden on clinicians and is automated, it may now be carefully introduced and evaluated in hospitals with sufficient informatics infrastructure.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.