• Neurosci Biobehav Rev · Oct 2011

    Review

    Drug-sensitive reward in crayfish: an invertebrate model system for the study of SEEKING, reward, addiction, and withdrawal.

    • Robert Huber, Jules B Panksepp, Thomas Nathaniel, Antonio Alcaro, and Jaak Panksepp.
    • J.P. Scott Center for Neuroscience, Mind & Behavior, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA. rh.bgsu@gmail.com
    • Neurosci Biobehav Rev. 2011 Oct 1; 35 (9): 1847-53.

    AbstractIn mammals, rewarding properties of drugs depend on their capacity to activate appetitive motivational states. With the underlying mechanisms strongly conserved in evolution, invertebrates have recently emerged as a powerful new model in addiction research. In crayfish natural reward has proven surprisingly sensitive to human drugs of abuse, opening an unlikely avenue of research into the basic biological mechanisms of drug addiction. In a series of studies we first examined the presence of natural reward systems in crayfish, then characterized its sensitivity to a wide range of human drugs of abuse. A conditioned place preference (CPP) paradigm was used to demonstrate that crayfish seek out those environments that had previously been paired with the psychostimulants cocaine and amphetamine, and the opioid morphine. The administration of amphetamine exerted its effects at a number of sites, including the stimulation of circuits for active exploratory behaviors (i.e., SEEKING). A further study examined morphine-induced reward, extinction and reinstatement in crayfish. Repeated intra-circulatory infusions of morphine served as a reward when paired with distinct visual or tactile cues. Morphine-induced CPP was extinguished after repeated saline injections. Following this extinction phase, morphine-experienced crayfish were once again challenged with the drug. The priming injections of morphine reinstated CPP at all tested doses, suggesting that morphine-induced CPP is unrelenting. In an exploration of drug-associated behavioral sensitization in crayfish we concurrently mapped measures of locomotion and rewarding properties of morphine. Single and repeated intra-circulatory infusions of morphine resulted in persistent locomotory sensitization, even 5 days following the infusion. Moreover, a single dose of morphine was sufficient to induce long-term behavioral sensitization. CPP for morphine and context-dependent cues could not be disrupted over a drug free period of 5 days. This work demonstrates that crayfish offer a comparative and complementary approach in addiction research. Serving as an invertebrate animal model for the exposure to mammalian drugs of abuse, modularly organized and experimentally accessible nervous systems render crayfish uniquely suited for studying (1) the basic biological mechanisms of drug effects, (2) to explore how the appetitive/seeking disposition is implemented in a simple neural system, and (3) how such a disposition is related to the rewarding action of drugs of abuse. This work aimed to contribute an evolutionary, comparative context to our understanding of a key component in learning, and of natural reward as an important life-sustaining process.Copyright © 2010 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.