• J Neurosurg Spine · Nov 2018

    Biomechanical assessment of proximal junctional semi-rigid fixation in long-segment thoracolumbar constructs.

    • Vibhu K Viswanathan, Ranjit Ganguly, Amy J Minnema, Nicole A DeVries Watson, Nicole M Grosland, Douglas C Fredericks, Andrew J Grossbach, Stephanus V Viljoen, and H Francis Farhadi.
    • 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and.
    • J Neurosurg Spine. 2018 Nov 2; 30 (2): 184-192.

    AbstractOBJECTIVEProximal junctional kyphosis (PJK) and failure (PJF) are potentially catastrophic complications that result from abrupt changes in stress across rigid instrumented and mobile non-fused segments of the spine (transition zone) after adult spinal deformity surgery. Recently, data have indicated that extension (widening) of the transitional zone via use of proximal junctional (PJ) semi-rigid fixation can mitigate this complication. To assess the biomechanical effectiveness of 3 semi-rigid fixation constructs (compared to pedicle screw fixation alone), the authors performed cadaveric studies that measured the extent of PJ motion and intradiscal pressure changes (ΔIDP).METHODSTo measure flexibility and ΔIDP at the PJ segments, moments in flexion, extension, lateral bending (LB), and torsion were conducted in 13 fresh-frozen human cadaveric specimens. Five testing cycles were conducted, including intact (INT), T10-L2 pedicle screw-rod fixation alone (PSF), supplemental hybrid T9 Mersilene tape insertion (MT), hybrid T9 sublaminar band insertion (SLB1), and hybrid T8/T9 sublaminar band insertion (SLB2).RESULTSCompared to PSF, SLB1 significantly reduced flexibility at the level rostral to the upper-instrumented vertebral level (UIV+1) under moments in 3 directions (flexion, LB, and torsion, p ≤ 0.01). SLB2 significantly reduced motion in all directions at UIV+1 (flexion, extension, LB, torsion, p < 0.05) and at UIV+2 (LB, torsion, p ≤ 0.03). MT only reduced flexibility in extension at UIV+1 (p = 0.02). All 3 constructs revealed significant reductions in ΔIDP at UIV+1 in flexion (MT, SLB1, SLB2, p ≤ 0.02) and torsion (MT, SLB1, SLB2, p ≤ 0.05), while SLB1 and SLB2 significantly reduced ΔIDP in extension (SLB1, SLB2, p ≤ 0.02) and SLB2 reduced ΔIDP in LB (p = 0.05). At UIV+2, SLB2 similarly significantly reduced ΔIDP in extension, LB, and torsion (p ≤ 0.05).CONCLUSIONSCompared to MT, the SLB1 and SLB2 constructs significantly reduced flexibility and ΔIDP in various directions through the application of robust anteroposterior force vectors at UIV+1 and UIV+2. These findings indicate that semi-rigid sublaminar banding can most effectively expand the transition zone and mitigate stresses at the PJ levels of long-segment thoracolumbar constructs.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.