• Plos One · Jan 2013

    Long-term exercise is a potent trigger for ΔFosB induction in the hippocampus along the dorso-ventral axis.

    • Takeshi Nishijima, Masashi Kawakami, and Ichiro Kita.
    • Laboratory of Behavioral Physiology, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.
    • Plos One. 2013 Jan 1; 8 (11): e81245.

    AbstractPhysical exercise improves multiple aspects of hippocampal function. In line with the notion that neuronal activity is key to promoting neuronal functions, previous literature has consistently demonstrated that acute bouts of exercise evoke neuronal activation in the hippocampus. Repeated activating stimuli lead to an accumulation of the transcription factor ΔFosB, which mediates long-term neural plasticity. In this study, we tested the hypothesis that long-term voluntary wheel running induces ΔFosB expression in the hippocampus, and examined any potential region-specific effects within the hippocampal subfields along the dorso-ventral axis. Male C57BL/6 mice were housed with or without a running wheel for 4 weeks. Long-term wheel running significantly increased FosB/ΔFosB immunoreactivity in all hippocampal regions measured (i.e., in the DG, CA1, and CA3 subfields of both the dorsal and ventral hippocampus). Results confirmed that wheel running induced region-specific expression of FosB/ΔFosB immunoreactivity in the cortex, suggesting that the uniform increase in FosB/ΔFosB within the hippocampus is not a non-specific consequence of running. Western blot data indicated that the increased hippocampal FosB/ΔFosB immunoreactivity was primarily due to increased ΔFosB. These results suggest that long-term physical exercise is a potent trigger for ΔFosB induction throughout the entire hippocampus, which would explain why exercise can improve both dorsal and ventral hippocampus-dependent functions. Interestingly, we found that FosB/ΔFosB expression in the DG was positively correlated with the number of doublecortin-immunoreactive (i.e., immature) neurons. Although the mechanisms by which ΔFosB mediates exercise-induced neurogenesis are still uncertain, these data imply that exercise-induced neurogenesis is at least activity dependent. Taken together, our current results suggest that ΔFosB is a new molecular target involved in regulating exercise-induced hippocampal plasticity.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.