• Journal of neurotrauma · Nov 2018

    Detection of Hyperexcitability by Functional Magnetic Resonance Imaging after Experimental Traumatic Brain Injury.

    • Joanna K Huttunen, Antti M Airaksinen, Carmen Barba, Gabriella Colicchio, Juha-Pekka Niskanen, Artem Shatillo, Alejandra Sierra Lopez, Xavier Ekolle Ndode-Ekane, Asla Pitkänen, and Olli H Gröhn.
    • 1 A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Kuopio, Finland .
    • J. Neurotrauma. 2018 Nov 15; 35 (22): 2708-2717.

    AbstractDiagnosis of ongoing epileptogenesis and associated hyperexcitability after brain injury is a major challenge. Given that increased neuronal activity in the brain triggers a blood oxygenation level-dependent (BOLD) response in functional magnetic resonance imaging (fMRI), we hypothesized that fMRI could be used to identify the brain area(s) with hyperexcitability during post-injury epileptogenesis. We applied fMRI to detect onset and spread of BOLD activation after pentylenetetrazol (PTZ)-induced seizures (PTZ, 30 mg/kg, intraperitoneally) in 16 adult male rats at 2 months after lateral fluid percussion (FPI)-induced traumatic brain injury (TBI). In sham-operated controls, onset of the PTZ-induced BOLD response was bilateral and first appeared in the cortex. After TBI, 5 of 9 (56%) rats exhibited ipsilateral perilesional cortical BOLD activation, followed by activation of the contralateral cortex. In 4 of 9 (44%) rats, onset of BOLD response was bilateral. Interestingly, latency from the PTZ injection to onset of the BOLD response increased in the following order: sham-operated controls (ipsilateral 132 ± 57 sec, contralateral 132 ± 57 sec; p > 0.05) < TBI with bilateral BOLD onset (ipsilateral 176 ± 54 sec, contralateral 178 ± 52 sec; p > 0.05) < TBI with ipsilateral BOLD onset (ipsilateral 406 ± 178 sec, contralateral 509 ± 140 sec; p < 0.05). Cortical lesion area did not differ between rats with ipsilateral versus bilateral BOLD onset (p > 0.05). In the group of rats with ipsilateral onset of PTZ-induced BOLD activation, none of the rats showed a robust bilateral thalamic BOLD response, only 1 of 5 rats had robust ipsilateral thalamic calcifications, and 4 of 5 rats had perilesional astrocytosis. These findings suggest the evolution of the epileptogenic zone in the perilesional cortex after TBI, which is sensitive to PTZ-induced hyperexcitability. Further studies are warranted to explore the evolution of thalamo-cortical pathology as a driver of epileptogenesis after lateral FPI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.