• Journal of anesthesia · Feb 2020

    Review

    Automated systems for perioperative goal-directed hemodynamic therapy.

    • Sean Coeckelenbergh, Cedrick Zaouter, Brenton Alexander, Maxime Cannesson, Joseph Rinehart, Jacques Duranteau, Philippe Van der Linden, and Alexandre Joosten.
    • Department of Anesthesiology, Erasme University Hospital, University Libre de Bruxelles, Brussels, Belgium.
    • J Anesth. 2020 Feb 1; 34 (1): 104-114.

    AbstractPerioperative goal-directed hemodynamic therapy (GDHT) has evolved from invasive "supra-physiological" maximization of oxygen delivery to minimally or even noninvasively guided automated stroke volume optimization. Over the past four decades, investigators have simultaneously developed novel monitors, updated strategies, and automated technologies to improve GDHT. Decision support technology, which proposes an intervention based on the patient's real time physiologic status, was an important step towards automation. Closed-loop systems have now been created to both increase GDHT compliance and decrease physician workload. These automated systems offer an elegant approach to optimize cardiac output and end-organ perfusion during the perioperative period. Most notably, automated preload optimization guided by dynamic indicators of fluid responsiveness has shown its feasibility, safety, and impact. Making the leap into fully automated GDHT has been accomplished on a small scale, but there are considerable challenges that must be surpassed before integrating all hemodynamic components into an automated system during general anesthesia. In this review, we will discuss the evolution and potential future of automated GDHT during the perioperative period.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.