-
- Juan Long, Chunjing He, Hua Ding, Yue Zhou, Xinguo Kang, and Jinfeng Zou.
- Guizhou Provincial People's Hospital.
- Pain Physician. 2019 Sep 1; 22 (5): E505-E510.
BackgroundDiabetes is one of the most common diseases in today's society. Diabetes can cause multiple vascular lesions in the body, renal insufficiency, blindness, and so on. However, the evidence concerning the role of extracorporeal shock wave therapy in diabetic vascular disease is insufficient.ObjectivesObservation of the effect of shock wave on vascular lesions in diabetic rats.Study DesignThis study used an experimental design.SettingThe research took place in the laboratory research center at The Third Military Medical University.MethodsEighteen healthy adult male Sprague Dawley rats were randomly divided into 3 groups: normal control group (group A), diabetic group (group B), and diabetes + shock wave treatment group (group C). Groups B and C were established by intraperitoneal injection of streptozotocin 60 mg/kg to demonstrate a diabetic rat model. Shock wave treatment was performed on the left lower extremity femoral artery in group C for 1 week (T1), 2 weeks (T2), 3 weeks (T3), and 4 weeks (T4) while the other 2 groups were reared normally. At the end of T4 shock wave treatment, the femoral arteries of each group were observed under an electron microscope. The expression of vascular endothelial growth factors (VEGF), endothelial nitric oxide synthase (eNOS), and angiotensin type 1 (AT1) were measured by western blot, and the changes of VEGF expression were detected by real-time polymerase chain reaction.ResultsThe VEGF and eNOS in group C were higher than those in group B (P < 0.05). The AT1 of the rats in the B and C groups was significantly higher than that in the A group (P < 0.05), but the C group was significantly lower than the B group (P < 0.05). After shock wave therapy, the surface of vascular endothelium in group C was flatter and smoother than that in group B, and the endothelial basement membrane and foot process were relatively tight.LimitationsPotential mechanisms that underlie the relationship between vascular dysfunction and diabetic neuropathy pain were not examined in this study.ConclusionsShock wave may promote the formation of new blood vessels and improve vasomotor function by upregulating VEGF, eNOS, and downregulation of AT1 in diabetic rats and improve the damage of blood glucose to blood vessels to some extent.Key WordsShock wave, diabetic rats, vascular dysfunction, neovascularization.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.