-
J. Thorac. Cardiovasc. Surg. · Feb 2020
Maladaptive remodeling of pulmonary artery root autografts after Ross procedure: A proteomic study.
- Anna Chiarini, Ilaria Dal Prà, Giuseppe Faggian, Ubaldo Armato, and Giovanni Battista Luciani.
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Italy.
- J. Thorac. Cardiovasc. Surg. 2020 Feb 1; 159 (2): 621-632.e3.
ObjectivePulmonary autograft root dilatation is the major long-term complication after Ross procedure and the leading cause for reoperation. However, the mechanisms underlying dilatation remain to be elucidated. This study analyzed the proteomic changes seen in the dilated pulmonary autograft compared with normal pulmonary artery and aorta tissues.MethodsPulmonary autograft surgical samples were taken from 9 consecutive patients (mean age 37 ± 14; 15-51 years) with mean diameters of 5.2 ± 0.5 cm (4.6-5.8 cm) reoperated 8 to 16 years after Ross procedure. Control pulmonary artery and aorta samples were from 7 age- and sex-matched cardiac donors. Tunicae mediae from all samples were processed for proteomic analysis via 2-dimensional electrophoresis, matrix-assisted-laser-desorption-ionization-time of flight/mass spectrometry, and bioinformatics. The thus-identified putatively relevant proteins were validated via Western immunoblotting.ResultsPulmonary autograft proteome features differed markedly from control pulmonary arteries, since proteins related to focal adhesions (eg, paxillin), cytoskeleton (eg, vimentin), and metalloprotease-regulating proteoglycans (eg, testican-2) were significantly up-regulated, whereas significant decreases occurred in microfibril-associated glycoprotein1, which controls elastic fiber buildup. Profound changes also occurred in cell-signaling proteins, ie, increases in soluble Jagged-1 fragment and ectodysplasin-2 receptor, and decreases in Notch-1 intracellular domain fragment. Moreover, pulmonary autograft expression levels of Paxillin, Vimentin, Jagged-1 fragment, and Notch1 intracellular domain fragment also differed from those of control aorta.ConclusionsThis study provides the first description of the specific proteomic features of dilated pulmonary autograft tunica media, which separate them sharply not only from those of control pulmonary artery and aorta but also of aortic aneurysms. These findings suggest that dilated pulmonary autografts undergo a unique maladaptive remodeling process deserving further investigation.Copyright © 2019 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.