• Pediatr Crit Care Me · Dec 2019

    Performance of an Automated Screening Algorithm for Early Detection of Pediatric Severe Sepsis.

    • Matthew Eisenberg, Kate Madden, Jeffrey R Christianson, Elliot Melendez, and Marvin B Harper.
    • Division of Emergency Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA.
    • Pediatr Crit Care Me. 2019 Dec 1; 20 (12): e516-e523.

    ObjectivesTo create and evaluate a continuous automated alert system embedded in the electronic health record for the detection of severe sepsis among pediatric inpatient and emergency department patients.DesignRetrospective cohort study. The main outcome was the algorithm's appropriate detection of severe sepsis. Episodes of severe sepsis were identified by chart review of encounters with clinical interventions consistent with sepsis treatment, use of a diagnosis code for sepsis, or deaths. The algorithm was initially tested based upon criteria of the International Pediatric Sepsis Consensus Conference; we present iterative changes which were made to increase the positive predictive value and generate an improved algorithm for clinical use.SettingA quaternary care, freestanding children's hospital with 404 inpatient beds, 70 ICU beds, and approximately 60,000 emergency department visits per year PATIENTS:: All patients less than 18 years presenting to the emergency department or admitted to an inpatient floor or ICU (excluding neonatal intensive care) between August 1, 2016, and December 28, 2016.InterventionCreation of a pediatric sepsis screening algorithm.Measurements And Main ResultsThere were 288 (1.0%) episodes of severe sepsis among 29,010 encounters. The final version of the algorithm alerted in 9.0% (CI, 8.7-9.3%) of the encounters with sensitivity 72% (CI, 67-77%) for an episode of severe sepsis; specificity 91.8% (CI, 91.5-92.1%); positive predictive value 8.1% (CI, 7.0-9.2%); negative predictive value 99.7% (CI, 99.6-99.8%). Positive predictive value was highest in the ICUs (10.4%) and emergency department (9.6%).ConclusionsA continuous, automated electronic health record-based sepsis screening algorithm identified severe sepsis among children in the inpatient and emergency department settings and can be deployed to support early detection, although performance varied significantly by hospital location.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…