• Anesthesiology · Dec 2019

    Review

    Artificial Intelligence and Machine Learning in Anesthesiology.

    • Christopher W Connor.
    • From the Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital; and the Department of Physiology and Biophysics, Boston University, Boston, Massachusetts.
    • Anesthesiology. 2019 Dec 1; 131 (6): 1346-1359.

    AbstractCommercial applications of artificial intelligence and machine learning have made remarkable progress recently, particularly in areas such as image recognition, natural speech processing, language translation, textual analysis, and self-learning. Progress had historically languished in these areas, such that these skills had come to seem ineffably bound to intelligence. However, these commercial advances have performed best at single-task applications in which imperfect outputs and occasional frank errors can be tolerated.The practice of anesthesiology is different. It embodies a requirement for high reliability, and a pressured cycle of interpretation, physical action, and response rather than any single cognitive act. This review covers the basics of what is meant by artificial intelligence and machine learning for the practicing anesthesiologist, describing how decision-making behaviors can emerge from simple equations. Relevant clinical questions are introduced to illustrate how machine learning might help solve them-perhaps bringing anesthesiology into an era of machine-assisted discovery.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…