-
- Romina Argañaraz, Amparo Sáenz, Juan Manuel Liñares, Patricia Martinez, Marcela Bailez, and Beatriz Mantese.
- Neurosurgery Department, Pediatric Hospital "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina.
- World Neurosurg. 2020 Feb 1; 134: 33-38.
ObjectiveTo present an attainable and realistic model for neuroendoscopic simulation which replicates exercises of tissue biopsy and coagulation and membrane fenestration.MethodsWe presented a stepwise method to create a neuroendoscopic simulation model using bovine brain and membrane units made by a soda cup covered by an amniotic membrane inside an expanded polystyrene spherical container. We used face validation for preliminary evaluation. We also rated the students before and after training with the NEVAT global rating scale (GRS) and recorded the time required to complete all 3 procedures (third ventriculostomy, tissue biopsy, and coagulation). The total cost of the model was $5.ResultsThe experts consider this new model as capable of reproducing real surgical situations with great similarity to the human brain. We tested the model in 20 trainees. The median GRS score before the training was 9 (range, 7-12). After repeated training and performance feedback, the final median GRS score was 41 (range, 37.5-45; P < 0.0001). The time needed to finish the exercises before training was 33 minutes (range, 30.5-42.5 minutes), and after using the model the final median time was 20 minutes (range, 17.5-22 minutes; P < 0.0001).ConclusionsSimulators for neuroendoscopy described so far are reliable, but they entail a high cost. Models with live animals, although of lower cost, are questioned from an ethical point of view. In the current work, we describe a high fidelity ventricular neuroendoscopic simulator model that, because of its low cost, can be replicated in any training center that has a neuroendoscope.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.