• Annals of surgery · Sep 2021

    Successful Implementation of Unmanned Aircraft Use for Delivery of a Human Organ for Transplantation.

    • Joseph R Scalea, Tony Pucciarella, Tara Talaie, Stephen Restaino, Cinthia Beskow Drachenberg, Charlie Alexander, Talal Al Qaoud, Rolf N Barth, Norman M Wereley, and Matthew Scassero.
    • University of Maryland School of Medicine, Baltimore, Maryland.
    • Ann. Surg. 2021 Sep 1; 274 (3): e282-e288.

    ObjectiveTo understand and overcome the challenges associated with moving life-urgent payloads using unmanned aircraft.Background DataOrgan transportation has not been substantially innovated in the last 60 years. Unmanned aircraft systems (UAS; ie, drones) have the potential to reduce system inefficiencies and improve access to transplantation. We sought to determine if UASs could successfully be integrated into the current system of organ delivery.MethodsA multi-disciplinary team was convened to design and build an unmanned aircraft to autonomously carry a human organ. A kidney transplant recipient was enrolled to receive a drone-shipped kidney.ResultsA uniquely designed organ drone was built. The aircraft was flown 44 times (total of 7.38 hours). Three experimental missions were then flown in Baltimore City over 2.8 miles. For mission #1, no payload was carried. In mission #2, a payload of ice, saline, and blood tubes (3.8 kg, 8.4 lbs) was flown. In mission #3, a human kidney for transplant (4.4 kg, 9.7 lbs) was successfully flown by a UAS. The organ was transplanted into a 44-year-old female with a history of hypertensive nephrosclerosis and anuria on dialysis for 8 years. Between postoperative days (POD) 1 and 4, urine increased from 1.0 L to 3.6 L. Creatinine decreased starting on POD 3, to an inpatient nadir of 6.9 mg/dL. The patient was discharged on POD 4.ConclusionsHere, we completed the first successful delivery of a human organ using unmanned aircraft. This study brought together multidisciplinary resources to develop, build, and test the first organ drone system, through which we performed the first transplant of a drone transported kidney. These innovations could inform not just transplantation, but other areas of medicine requiring life-saving payload delivery as well.Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.