-
Randomized Controlled Trial Comparative Study
A Prospective Randomized Comparative Study of Three Guided Bronchoscopic Approaches for Investigating Pulmonary Nodules (The PRECISION-1 Study).
- Lonny Yarmus, Jason Akulian, Momen Wahidi, Alex Chen, Jennifer P Steltz, Sam L Solomon, Diana Yu, Fabien Maldonado, Jose Cardenas-Garcia, Daniela Molena, Hans Lee, Anil Vachani, and Interventional Pulmonary Outcomes Group (IPOG).
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD. Electronic address: lyarmus@jhmi.edu.
- Chest. 2020 Mar 1; 157 (3): 694-701.
BackgroundThe capability of bronchoscopy in the diagnosis of peripheral pulmonary nodules (PPNs) remains limited. Despite decades of effort, evidence suggests that the diagnostic accuracy for electromagnetic navigational bronchoscopy (EMN) and radial endobronchial ultrasound (EBUS) approach only 50%. New developments in robotic bronchoscopy (RB) may offer improvements in the assessment of PPNs.MethodsA prospective single-blinded randomized controlled comparative study to assess success in localization and puncture of PPNs, using an ultrathin bronchoscope with radial EBUS (UTB-rEBUS) vs EMN vs RB in a human cadaver model of PPNs < 2 cm, was performed. The primary end point was the ability to successfully localize and puncture the target nodule, verified by cone-beam CT comparing RB and EMN. Secondary end points included needle to target position "miss" distance, and UTB-rEBUS comparisons.ResultsSixty procedures were performed to target 20 PPNs over the study period. Implanted PPNs were distributed across all lobes, with 80% located within the lung periphery. The target PPN mean diameter was 16.5 ± 1.5 mm, with 50% noted to have a CT bronchus sign. The rate of successful PPN localization and puncture was superior when using RB, compared with EMN (80% vs 45%; P = .02). Among unsuccessful needle passes, the median needle to target "miss" distance was significantly different when comparing UTB-rEBUS, EMN, and RB (P = .0014).ConclusionsIn a cadaver model, use of RB significantly increased the ability to localize and successfully puncture small PPNs when compared with existing technologies. This study demonstrates the potential of RB to precisely reach, localize, and puncture small nodules in the periphery of the lung.Copyright © 2019 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.