• J Clin Monit Comput · Aug 1999

    New approaches for the detection and analysis of electroencephalographic burst-suppression patterns in patients under sedation.

    • L Leistritz, H Jäger, C Schelenz, H Witte, P Putsche, M Specht, and K Reinhart.
    • Institute of Medical Statistics, Computer Sciences and Documentation, Friedrich Schiller University Jena, Jena, Germany.
    • J Clin Monit Comput. 1999 Aug 1; 15 (6): 357-67.

    AbstractAn automatic EEG pattern detection unit was developed and tested for the recognition of burst-suppression periods and for the separation of burst from suppression patterns. The median, standard deviation and the 95% edge frequency were computed from single channels of the EEG within a moving window and completed by the continuous computation of frequency band power via an adapted Hilbert resonance filter. These parameters were given to the inputs of two hierarchically arranged artificial neural networks (NNs). The output signals of NNs indicate the suppression and burst phases. The burst recognition was focused on the precise recognition of the burst onset. In subsequent processing steps the time course of percentages of burst patterns within their corresponding burst-suppression-phases was calculated and the time locations of burst onsets can be used to trigger an averaging for a burst-related analysis. The data for our investigations were derived from the routine EEG derivations of 12 patients with various neurosurgical diseases. A group-related training of the NNs was realized. For the group-related trained NNs EEG data for 6 patients were used for training and the data of 6 other patients for testing the classification performance of the pattern recognition units. Additionally, the reliability of the detection algorithm was tested with data of two patients with convulsive state, resistant to treatment, and burst-suppression like pattern EEC.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.