• J Clin Monit Comput · Jan 2000

    An IBM PC-based system for the assessment of cardio-respiratory function using oscillating inert gas forcing signals.

    • L S Wong, E M Williams, R Hamilton, and C E Hahn.
    • Nuffield Department of Anaesthetics, University of Oxford, Radcliffe Infirmary, Oxford, UK. lawdy.wong@nda.ox.ac.uk
    • J Clin Monit Comput. 2000 Jan 1; 16 (1): 33-43.

    ObjectiveAn IBM PC-based real-time data acquisition, monitoring and analysis system was developed for the assessment of cardio-respiratory function, i.e. airway dead space, alveolar volume and pulmonary blood flow, using oscillating inert inspired gas forcing signals.MethodsThe forcing gas mixture was generated by an in-house sinusoid gas delivery unit. The system interfaced with a mass spectrometer and an airway flow transducer, and performed real-time tracking of the breath-by-breath end-inspired, end-expired and mixed-expired concentrations. It calculated the cardiorespiratory parameters using two, i.e. continuous and tidal, in-house mathematical models of the lungs. The system's performance was evaluated using a mechanical bench lung, laboratory subjects and awake adults breathing spontaneously. Its predictive accuracy was compared with the measured volumes of the bench lung; single breath CO2 test for airway dead space and N2 washout for alveolar volume in laboratory subjects and awake adults; and thermal dilution technique for pulmonary blood flow in laboratory subjects.ResultsClose agreements were found between the true and predicted airway dead space, i.e. mean differences of -12.39%, 14.47% and -17.49%, respectively, and that of alveolar volume, i.e. -8.03%, -3.62% and 7.22%, respectively, in the bench lung, laboratory subject and awake adult studies; and that of pulmonary blood flow (-23.81%) in the laboratory subjects using the continuous lung model. Even closer agreements were observed for airway dead space (-5.8%) and alveolar volume (-4.01%) of the bench lung and for pulmonary blood flow (-8.47%) in the laboratory subjects using the tidal lung model.ConclusionsA system was developed to deliver, monitor and analyse on-line, and in real-time, output data from the sinusoid forcing technique. The technique was administered using the system in various subjects, and produced favourable predictions.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.