• Allergy · Jan 2013

    Asthma severity in childhood and metabolomic profiling of breath condensate.

    • S Carraro, G Giordano, F Reniero, D Carpi, M Stocchero, P J Sterk, and E Baraldi.
    • Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy.
    • Allergy. 2013 Jan 1; 68 (1): 110-7.

    BackgroundAsthma is a heterogeneous disease and its different phenotypes need to be better characterized from a biochemical-inflammatory standpoint. This study aimed to apply the metabolomic approach to exhaled breath condensate (breathomics) to discriminate different asthma phenotypes, with a particular focus on severe asthma in children.MethodsIn this cross-sectional study, we recruited 42 asthmatic children (age, 8-17 years): 31 with nonsevere asthma (treated with inhaled steroids or not) and 11 with severe asthma. Fifteen healthy children were enrolled as controls. Children performed exhaled nitric oxide measurement, spirometry, exhaled breath condensate (EBC) collection. Condensate samples were analyzed using a metabolomic approach based on mass spectrometry.ResultsA robust Bidirectional-Orthogonal Projections to Latent Structures-Discriminant Analysis (O2PLS-DA) model was found for discriminating both between severe asthma cases and healthy controls (R(2)  = 0.93; Q(2)  = 0.75) and between severe asthma and nonsevere asthma (R(2)  = 0.84; Q(2)  = 0.47). The metabolomic data analysis leads to a robust model also when the 3 groups of children were considered altogether (K = 0.80), indicating that each group is characterized by a specific metabolomic profile. Compounds related to retinoic acid, adenosine and vitamin D (Human Metabolome Database) were relevant for the discrimination between groups.ConclusionThe metabolomic profiling of EBC could clearly distinguish different biochemical-metabolic profiles in asthmatic children and enabled the severe asthma phenotype to be fully discriminated. The breathomics approach may therefore be suitable for discriminating between different asthma metabolic phenotypes.© 2012 John Wiley & Sons A/S.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…