-
- Brian L Hill, Robert Brown, Eilon Gabel, Nadav Rakocz, Christine Lee, Maxime Cannesson, Pierre Baldi, Loes Olde Loohuis, Ruth Johnson, Brandon Jew, Uri Maoz, Aman Mahajan, Sriram Sankararaman, Ira Hofer, and Eran Halperin.
- Department of Computer Science, University of California, Los Angeles, CA, USA.
- Br J Anaesth. 2019 Dec 1; 123 (6): 877886877-886.
BackgroundRapid, preoperative identification of patients with the highest risk for medical complications is necessary to ensure that limited infrastructure and human resources are directed towards those most likely to benefit. Existing risk scores either lack specificity at the patient level or utilise the American Society of Anesthesiologists (ASA) physical status classification, which requires a clinician to review the chart.MethodsWe report on the use of machine learning algorithms, specifically random forests, to create a fully automated score that predicts postoperative in-hospital mortality based solely on structured data available at the time of surgery. Electronic health record data from 53 097 surgical patients (2.01% mortality rate) who underwent general anaesthesia between April 1, 2013 and December 10, 2018 in a large US academic medical centre were used to extract 58 preoperative features.ResultsUsing a random forest classifier we found that automatically obtained preoperative features (area under the curve [AUC] of 0.932, 95% confidence interval [CI] 0.910-0.951) outperforms Preoperative Score to Predict Postoperative Mortality (POSPOM) scores (AUC of 0.660, 95% CI 0.598-0.722), Charlson comorbidity scores (AUC of 0.742, 95% CI 0.658-0.812), and ASA physical status (AUC of 0.866, 95% CI 0.829-0.897). Including the ASA physical status with the preoperative features achieves an AUC of 0.936 (95% CI 0.917-0.955).ConclusionsThis automated score outperforms the ASA physical status score, the Charlson comorbidity score, and the POSPOM score for predicting in-hospital mortality. Additionally, we integrate this score with a previously published postoperative score to demonstrate the extent to which patient risk changes during the perioperative period.Copyright © 2019 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.