-
Journal of critical care · Feb 2020
Observational StudyMachine learning for prediction of septic shock at initial triage in emergency department.
- Joonghee Kim, HyungLan Chang, Doyun Kim, Dong-Hyun Jang, Inwon Park, and Kyuseok Kim.
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Gyeonggi-do, Seongnam-si 463-707, Republic of Korea.
- J Crit Care. 2020 Feb 1; 55: 163-170.
BackgroundWe hypothesized utilizing machine learning (ML) algorithms for screening septic shock in ED would provide better accuracy than qSOFA or MEWS.MethodsThe study population was adult (≥20 years) patients visiting ED for suspected infection. Target event was septic shock within 24 h after arrival. Demographics, vital signs, level of consciousness, chief complaints (CC) and initial blood test results were used as predictors. CC were embedded into 16-dimensional vector space using singular value decomposition. Six base learners including support vector machine, gradient-boosting machine, random forest, multivariate adaptive regression splines and least absolute shrinkage and selection operator and ridge regression and their ensembles were tested. We also trained and tested MLP networks with various setting.ResultsA total of 49,560 patients were included and 4817 (9.7%) had septic shock within 24 h. All ML classifiers significantly outperformed qSOFA score, MEWS and their age-sex adjusted versions with their AUROC ranging from 0.883 to 0.929. The ensembles of the base classifiers showed the best performance and addition of CC embedding was associated with statistically significant increases in performance.ConclusionsML classifiers significantly outperforms clinical scores in screening septic shock at ED triage.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.