• The lancet oncology · May 2019

    Review

    Big data and machine learning algorithms for health-care delivery.

    • Kee Yuan Ngiam and Ing Wei Khor.
    • Department of Surgery, National University of Singapore, Singapore; Division of General Surgery (Thyroid and Endocrine Surgery), University Surgical Cluster, National University Hospital, Singapore; National University Health System Corporate Office, Singapore. Electronic address: kee_yuan_ngiam@nuhs.edu.sg.
    • Lancet Oncol. 2019 May 1; 20 (5): e262-e273.

    AbstractAnalysis of big data by machine learning offers considerable advantages for assimilation and evaluation of large amounts of complex health-care data. However, to effectively use machine learning tools in health care, several limitations must be addressed and key issues considered, such as its clinical implementation and ethics in health-care delivery. Advantages of machine learning include flexibility and scalability compared with traditional biostatistical methods, which makes it deployable for many tasks, such as risk stratification, diagnosis and classification, and survival predictions. Another advantage of machine learning algorithms is the ability to analyse diverse data types (eg, demographic data, laboratory findings, imaging data, and doctors' free-text notes) and incorporate them into predictions for disease risk, diagnosis, prognosis, and appropriate treatments. Despite these advantages, the application of machine learning in health-care delivery also presents unique challenges that require data pre-processing, model training, and refinement of the system with respect to the actual clinical problem. Also crucial are ethical considerations, which include medico-legal implications, doctors' understanding of machine learning tools, and data privacy and security. In this Review, we discuss some of the benefits and challenges of big data and machine learning in health care.Copyright © 2019 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…