• Medical hypotheses · Feb 2019

    Carbonic anhydrase enzymes: Likely targets for inhalational anesthetics.

    • H Z Ozsoy.
    • 2515 Gramercy Street, Houston, TX 77030, United States. Electronic address: haticezehra@hotmail.com.
    • Med. Hypotheses. 2019 Feb 1; 123: 118-124.

    AbstractInhalational anesthetics such as isoflurane, desflurane and halothane are the mainstay medications for surgical procedures; upon inhalation, they produce anesthesia described as reversible unconsciousness with the features of amnesia, sleep, immobility and analgesia. To date, how they produce anesthesia is unknown. This study proposes that carbonic anhydrase enzymes are likely targets mediating the actions of inhalational anesthetics. Carbonic anhydrase enzymes, commonly expressed in living organisms, utilize carbon dioxide (CO2) as a substrate and can generate H+ and HCO3- from CO2 with a great efficiency. There are remarkable lines of evidence for their likely roles in mediating anesthetic actions. Firstly, carbonic anhydrase enzymes are extensively expressed in the brain and spinal cord, and their importance in the brain activity, especially for the GABA and NMDA receptor signaling pathways, has been demonstrated in numerous studies. According to these studies, they provide HCO3- for GABA-A receptor activities and also buffer HCO3- excess resulting from NMDA receptor activation. Activation of GABA-A and inhibition of NMDA receptors are associated with the induction of anesthesia by the intravenous general anesthetics propofol and ketamine, respectively. Secondly, the carbonic anhydrase inhibitors topiramate and zonisamide are effectively used in the treatment of epilepsy for decades; their chronic use results in the requirement of increased levels of amobarbital in order to produce anesthesia in the epileptic patients during WADA test. In addition, given that CO2 is a substrate for these enzymes, their tertiary structure is likely has a hydrophobic pocket suitable for the anesthetic molecules to bind. Inhalational anesthetic molecules, which are lipophilic and inert in nature, have an ability to cross the membranes and inhibit carbonic anhydrases, which might not be accessible by topiramate and zonisamide. Unlike carbonic anhydrase inhibitors, they could bind to the hydrophobic pocket for CO2 molecules and produce a profound effect called anesthesia. Finally, there is a great deal of similarities between the physiological actions of inhalational anesthetics and carbonic anhydrase inhibitors; moreover well-known side effects of inhalational anesthetics could be associated with the inhibition of carbonic anhydrases. Therefore, this article presents a hypothesis that the anesthetic actions of inhalational anesthetics could be due to their inhibitory effects on the carbonic anhydrases. Investigating this hypothesis might lead to the development of new safer anesthetics, and more importantly it might reveal an endogenous anesthetic pathway, in which the carbonic anhydrase system is a component along with the GABA-A and NMDA receptor systems.Copyright © 2019 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.