-
Conf Proc IEEE Eng Med Biol Soc · Jan 2012
Discovering shared dynamics in physiological signals: application to patient monitoring in ICU.
- Li-wei H Lehman, Shamim Nemati, Ryan P Adams, and Roger G Mark.
- Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, MA 02142, USA. lilehman@mit.edu
- Conf Proc IEEE Eng Med Biol Soc. 2012 Jan 1; 2012: 5939-42.
AbstractModern clinical databases include time series of vital signs, which are often recorded continuously during a hospital stay. Over several days, these recordings may yield many thousands of samples. In this work, we explore the feasibility of characterizing the "state of health" of a patient using the physiological dynamics inferred from these time series. The ultimate objective is to assist clinicians in allocating resources to high-risk patients. We hypothesize that "similar" patients exhibit similar dynamics and the properties and duration of these states are indicative of health and disease. We use Bayesian nonparametric machine learning methods to discover shared dynamics in patients' blood pressure (BP) time series. Each such "dynamic" captures a distinct pattern of evolution of BP and is possibly recurrent within the same time series and shared across multiple patients. Next, we examine the utility of this low-dimensional representation of BP time series for predicting mortality in patients. Our results are based on an intensive care unit (ICU) cohort of 480 patients (with 16% mortality) and indicate that the dynamics of time series of vital signs can be an independent useful predictor of outcome in ICU.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.