-
- Ayako Tojo, Kazuhiro Uchimoto, Gaku Inagawa, and Takahisa Goto.
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Japan. aauaaao@gmail.com.
- BMC Anesthesiol. 2019 Jul 4; 19 (1): 119.
BackgroundQuick and complete recovery of cognitive function after general anesthesia is desirable, particularly for working-age patients. Desflurane is less likely to have long-term effects than older-generation inhalational anesthetics, however, its short-term effects have not been fully investigated. Our objective was to elucidate the short-term effects of desflurane exposure on learning and memory in young adult rats.MethodsSeven-week old male Sprague-Dawley rats were exposed to air (control), or desflurane at 0.7 or 1.2 minimum alveolar concentration (MAC) for 2 h (day 0). The inhibitory avoidance (IA) test was performed on day 1 to delineate the effects on contextual learning. Separate groups of control and 1.2 MAC desflurane animals underwent the IA test on days 3 and 7 to examine the time-dependent changes. Because the IA test is known to be dependent on the long-term potentiation (LTP) of the hippocampus and the trafficking of the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor into the synapses, the effects of 1.2 MAC desflurane on these phenomena were evaluated on day 1.ResultsDesflurane at 1.2 MAC, but not 0.7 MAC, significantly decreased the IA latencies on day 1 compared with the control (one-way ANOVA, F [2,48] = 5.974, P = 0.005, post hoc Tukey's, mean difference [95% confidence interval], control vs. 1.2 MAC, 168 [49.9 to 287], P = 0.004; control vs. 0.7 MAC, 67.5 [- 51.2 to 186], P = 0.362). The latencies were not affected on days 3 and 7 (day 3, control vs. desflurane, P = 0.861; day 7, control vs. desflurane, P > 0.999). Consistently, hippocampal LTP on day 1 was significantly suppressed in the desflurane group compared with the control group (P = 0.006). Moreover, immunoblotting analysis of synaptic GluR1 expression revealed that desflurane exposure significantly suppressed GluR1 delivery to the synapses after IA training.ConclusionExposure to a relatively high concentration of desflurane caused reversible learning and memory impairment in young adult rats associated with suppression of GluR1 delivery to the synapses in the hippocampus.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.