• J Trauma · Sep 1999

    Three-dimensional finite element analysis of subdural hematoma.

    • H M Huang, M C Lee, W T Chiu, C T Chen, and S Y Lee.
    • Taipei Medical College, Graduate Institute of Oral Rehabilitate Sciences, Taiwan, Republic of China.
    • J Trauma. 1999 Sep 1; 47 (3): 538-44.

    BackgroundHead motion, an important factor in acute subdural hematoma (ASDH), can be broken down into translational and rotational elements. We used three-dimensional finite element analysis to examine the thresholds of angular and tangential acceleration required to tear bridging veins in humans during head impact.MethodsThe lengths of midsagittal and parasagittal bridging veins were calculated first. To assess the effect of translational and rotational acceleration, the strain of each vein was then computed under three different motions. The threshold of ASDH was expressed in terms of tangential and rotational acceleration.ResultsDeformation-angle histories of the midsagittal and parasagittal bridging veins showed that veins that drain forward into the superior sinus at a 130-degree angle incurred the greatest stretch strain during occipital impact. In the midsagittal plane, pure rotation induced greater stretch strain on these veins (14.4%) than pure translation (2.5%) or combined translation and rotation motion (10.4%). A tangential acceleration of 3,912.9 G or an angular acceleration of 71.2 krad/s2 seemed to approximate the threshold for ASDH in the human midsagittal plane, whereas 5,010.9 G and 97.4 krad/s2 approximated the threshold in the parasagittal plane.ConclusionImpact direction and orientation of bridging veins are both important factors in ASDH. Threshold criteria for ASDH can be expressed in terms of tangential and rotational acceleration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.