• Annals of plastic surgery · Dec 2018

    Prevention of Burn Wound Progression by Mesenchymal Stem Cell Transplantation: Deeper Insights Into Underlying Mechanisms.

    • Ozan Luay Abbas, Orhan Özatik, Zeynep Burçin Gönen, Serdal Öğüt, Emre Entok, Fikriye Yasemin Özatik, Dilek Bahar, Zehra Burcu Bakir, and Ahmet Musmul.
    • From the Departments of Plastic, Reconstructive and Aesthetic Surgery and.
    • Ann Plast Surg. 2018 Dec 1; 81 (6): 715-724.

    IntroductionBurns are dynamic wounds that may present a progressive expansion of necrosis into the initially viable zone of stasis. Therefore, salvage of this zone is a major subject of focus in burn research. The beneficial effects of mesenchymal stem cells (MSCs) on the survival of the zone of stasis have been previously documented. However, many gaps still exist in our knowledge regarding the underlying protective mechanisms. Hence, this study was designed to evaluate the pathophysiological basis of MSCs in the prevention of burn wound progression.MethodsWistar rats received thermal trauma on the back according to the "comb burn" model. Animals were randomly divided into sham, control, and stem cell groups with sacrifice and analysis at 72 hours after the burn. The stasis zones were evaluated using histochemistry, immunohistochemistry, biochemistry, real-time polymerase chain reaction assay, and scintigraphy to evaluate the underlying mechanisms.ResultsGross evaluation of burn wounds revealed that vital tissue percentage of the zone of stasis was significantly higher in the stem cell group. Semiquantitative grading of the histopathologic findings showed that MSCs alleviated burn-induced histomorphological alterations in the zone of stasis. According to CC3a staining and expression analysis of Bax (B-cell leukemia 2-associated X) and Bcl-2 (B-cell leukemia 2) genes, MSCs attenuated increases in apoptosis postburn. In addition, these transplants showed an immunomodulatory effect that involves reduced neutrophilic infiltration, down-regulation of proinflammatory cytokines (tumor necrosis factor α, interleukin 1β [IL-1β], and IL-6), and up-regulation of the anti-inflammatory cytokine IL-10 in the zone of stasis. Burn-induced oxidative stress was significantly relieved with MSCs, as shown by increased levels of malondialdehyde, whereas the expression and activity of the antioxidant enzyme superoxide dismutase were increased. Finally, MSC-treated interspaces had enhanced vascular density with higher expression levels for vascular endothelial growth factor A, platelet-derived growth factor, fibroblast growth factor, and transforming growth factor β. Gamma camera images documented better tissue perfusion in animals treated with MSCs.ConclusionsThe protective effects of MSCs are mediated by the inhibition of apoptosis through immunomodulatory, antioxidative, and angiogenic actions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.