-
Free Radic. Biol. Med. · Dec 2015
Randomized Controlled TrialVitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
- Dale Morrison, Jed Hughes, Paul A Della Gatta, Shaun Mason, Séverine Lamon, Aaron P Russell, and Glenn D Wadley.
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria, Australia.
- Free Radic. Biol. Med. 2015 Dec 1; 89: 852-62.
BackgroundIt is clear that reactive oxygen species (ROS) produced during skeletal muscle contraction have a regulatory role in skeletal muscle adaptation to endurance exercise. However, there is much controversy in the literature regarding whether attenuation of ROS by antioxidant supplementation can prevent these cellular adaptations. Therefore, the aim of this study was to determine whether vitamin C and E supplementation attenuates performance and cellular adaptations following acute endurance exercise and endurance training.MethodsA double-blinded, placebo-controlled randomized control trial was conducted in eleven healthy young males. Participants were matched for peak oxygen consumption (VO 2peak) and randomly allocated to placebo or antioxidant (vitamin C (2 × 500 mg/day) and E (400 IU/day)) groups. Following a four-week supplement loading period, participants completed acute exercise (10 × 4 min cycling at 90% VO 2peak, 2 min active recovery). Vastus lateralis muscle samples were collected pre-, immediately-post- and 3h-post-exercise. Participants then completed four weeks of training (3 days/week) using the aforementioned exercise protocol while continuing supplementation. Following exercise training, participants again completed an acute exercise bout with muscle biopsies.ResultsAcute exercise tended to increase skeletal muscle oxidative stress as measured by oxidized glutathione (GSSG) (P=0.058) and F2-isoprostanes (P=0.056), with no significant effect of supplementation. Acute exercise significantly increased mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM) and PGC related coactivator (PRC), with no effect of supplementation. Following endurance training, supplementation did not prevent significantly increased VO 2peak, skeletal muscle levels of citrate synthase activity or mRNA or protein abundance of cytochrome oxidase subunit 4 (COX IV) (P<0.05). However, following training, vitamin C and E supplementation significantly attenuated increased skeletal muscle superoxide dismutase (SOD) activity and protein abundance of SOD2 and TFAM.ConclusionFollowing acute exercise, supplementation with vitamin C and E did not attenuate skeletal muscle oxidative stress or increased gene expression of mitochondrial biogenesis markers. However, supplementation attenuated some (SOD, TFAM) of the increased skeletal muscle adaptations following training in healthy young men.Copyright © 2015 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.