-
Pediatr Crit Care Me · Apr 2020
Trans-Right-Ventricle and Transpulmonary MicroRNA Gradients in Human Pulmonary Arterial Hypertension.
- Philippe Chouvarine, Jonas Geldner, Roberto Giagnorio, Ekaterina Legchenko, Harald Bertram, and Georg Hansmann.
- All authors: Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany.
- Pediatr Crit Care Me. 2020 Apr 1; 21 (4): 340-349.
ObjectivesWe investigated whether concentrations of circulating microRNAs differ across the hypertensive right ventricle and pulmonary circulation, and correlate with hemodynamic/echocardiographic variables in patients with pulmonary arterial hypertension versus nonpulmonary arterial hypertension controls.DesignProspective blood collection during cardiac catheterization from the superior vena cava, pulmonary artery, and ascending aorta in 12 children with pulmonary arterial hypertension and nine matched nonpulmonary arterial hypertension controls, followed by an unbiased quantitative polymerase chain reaction array screen for 754 microRNAs in plasma.SettingChildren's hospital at a medical school.PatientsTwelve pulmonary arterial hypertension patients included as follows: idiopathic pulmonary arterial hypertension (5), pulmonary arterial hypertension (2), pulmonary arterial hypertension-repaired congenital heart disease (4), portopulmonary pulmonary hypertension (1). Nine nonpulmonary arterial hypertension controls included as follows: mild/moderate left ventricular outflow tract obstruction (7), mediastinal teratoma (1), portal vein stenosis (1).InterventionsStandard pulmonary arterial hypertension treatment.Measurements And Main ResultsAnalysis of differential concentrations (false discovery rate < 0.05) revealed two trans-right-ventricle microRNA gradients (pulmonary artery vs superior vena cava): miR-193a-5p (step-up in pulmonary arterial hypertension and step-down in control) and miR-423-5p (step-down in pulmonary arterial hypertension and step-up in control) and two transpulmonary microRNA gradients (ascending aorta vs pulmonary artery): miR-26b-5p (step-down only in control) and miR-331-3p (step-up only in pulmonary arterial hypertension). Between-group comparison revealed miR-29a-3p, miR-26a-5p, miR-590-5p, and miR-200c-3p as upregulated in pulmonary arterial hypertension-superior vena cava and miR-99a-5p as downregulated in pulmonary arterial hypertension-pulmonary artery. The differential microRNA-concentrations correlated with prognostic hemodynamic variables (pulmonary vascular resistance, tricuspid annular plane systolic excursion, etc.).ConclusionsWe identified for the first time in human disease (pulmonary arterial hypertension) trans-right-ventricle and transpulmonary microRNA gradients in blood plasma. Several of these microRNAs regulate transcripts that drive cardiac remodeling and pulmonary arterial hypertension and are now emerging as epigenetic pulmonary arterial hypertension biomarkers and targets for therapy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.